NCDOT WETLAND MODELING PROGRAM UPDATES

Presented at the Interagency Coordination Meeting October 16, 2014

Morgan Weatherford, NC DOT

PURPOSE AND NEED

- NCDOT's Streamlined Project Development Process includes GIS-based impact projections
- Existing GIS data sources are not of sufficient quality => all proposed corridors must be field surveyed => more time and money
- Examples:
 - USFWS National Wetland Inventory (NWI)
 - USGS 1:24,000 scale streamlines
 - NRCS Soil Survey Maps

PURPOSE AND NEED

- Produce high quality GIS data that is accurate and consistent enough to compare alternatives
- Reduce field work, costs and project delivery times
- NCDOT goal of requiring full field delineations only for LEDPA corridor.
- Three pilot projects established: Carthage, Kinston, and ? (originally Dillsboro Bypass)

PILOT PROJECT - CARTHAGE

- Carthage bypass, TIP R-2212, is the first proposed pilot project
- Located in Moore Co.
- Triassic Basins and Sandhills ecoregions
- Wetland and headwater stream models developed and applied
- Accuracy assessed
- Results were used to determine utility and feasibility of expansion of modeling efforts to other pilot projects and eventually the entire state

RESULTS CARTHAGE

RESULTS CARTHAGE (BY CORRIDOR)

PILOT PROJECT – KINSTON BYPASS

- Kinston bypass, TIP R-2553, is the second proposed pilot project
- Located in Lenoir Co.
- Rolling Coastal Plains, Southeaster Floodplains/Low Terraces and Carolina Flatwoods ecoregions
- Wetland and headwater stream models developed and applied
- Updated ~30 layers for the entire county to help choose LEDPA
- Developed GIS-based NRTR
- Developed remote-assessment for stream crossings for CP2A
- Developed county-wide ditch model to estimate lateral effect to be determined how to use appropriately

Initial Route Options Developed

21 DSAs Refined and Narrowed to 17 (follow-up to CP2)

17 DSAs Narrowed Down to 12 at CP2 Revisited

KINSTON BYPASS

- Allows for consideration/evaluation of a large amount of initial alternatives
- Can easily quantify impacts of new alternatives or revised alternatives
- Allows for design revisions "outside of the corridor" without the need for additional field work
 - Avoidance and minimization of impacts by shifting roadway and interchanges
 - Late addition of Shallow Bypass alternative based on public input

KINSTON BYPASS

Stream and Wetland LiDAR based models developed to produce GIS data layers

Time and cost savings

\$250,000 = Stream and Wetland GIS data layers VS
\$600,000 = Traditional field delineation

- Model results extend beyond project study area
- Can be used for other projects (Carey Road Ext)
- Kinston results applicable to three ecoregions
- SOS to CP2A (10/2009 to 4/2014)
 53* months vs. 69 month avg. = a savings of 16 months

R-2609 - US 401 IMPROVEMENTS

- From Fayetteville to Fuquay-Varina
- Not Pilot Project
- Applying what was developed for Kinston Bypass
- Using to review alternatives for CP2
- Sandhills, SFLT, Rolling Coastal Plain, Northern Outer Piedmont

GENERAL METHODS

GENERAL METHODS

Model applied to test area

-ielo data

GIS stream lines or wetland polygons

DIGITAL ELEVATION MODEL (DEM) RASTER

DEM overview (scale 1:100K)

DEM detail (scale 1:285)

512.83	510.76					499.55	497.98
510.98					499.54	497.93	496.4
509.69				499.83	498.1	496.52	494.96
				498.92	497.13	495.47	493.84
				498.71	496.88	495.13	493.39
			500.83	498.94	497.11	495.31	493.49
509.25				499.29	497.41	495.55	493.67
509.31 Legei	507.4 nd	505.4	501.42	499.49	497.58	495.69	493.79
	High : 59	1.816		499.49	497.59	495.69	493.78
L	_ow : 26	2.113		499.35	497.45	495.53	493.63

THINGS TO DO WITH DEMS: TERRAIN DERIVATIVES

Elevation

Slope

TERRAIN DERIVATIVE EXAMPLES

Curvature

Depression analysis

VARIABLES

- 12 Terrain Derivatives
- Soils
- LULC
- Other Models
- Post treatment variables
- Requires ArcGIS w Spatial Analyst, Taudem, TAS, SAS
- Can be time-consuming, need for automation

CURRENT RESEARCH PROJECT

- Automated generation of terrain derivatives
- One click wetland prediction
- Refinement stage

RESEARCH PROJECT

UPCOMING RESEARCH PROJECTS

- To expand on current wetland models
 - NCWAM wetland type
 - Functional assessment (Not trying to duplicate NCWAM in GIS)
- To predict tidal wetlands using the new QL2 LiDAR

QL2 LIDAR

- USGS/FPM captured 20 coastal counties earlier this year
- 20 more counties (paid for by NCDOT) also earlier this year
- 20 counties each year for the next three years
- 0.59 ft. fundamental vertical accuracy at 95% confidence level (open terrain)
- Nominal 2 points per meter
- Intensity values
- Point cloud classification

OL2 LIDAR

QL2 LIDAR

