

HARD CORE A Zoned Embankment Case Study Bill Billiet, P.E.

schnabel-eng.com

Zoned Embankment Overview

- Introduction
- Problem
- Solution
- Analyses
- Results
- Other Methods
- Lessons Learned

Introduction

18.8 miles – I-270/I370 to I-95/US-1 6-lane divided highway with 8 full interchanges

Introduction

Purpose:

- Link existing and proposed development
- State-of-the-art, limited/controlled access
- Minimal environmental impact

Problem - Earthwork Conditions

Fill Requirement: 92% MDD (Modified) at +/- 2% OMC

- Average natural moisture content of on-site soils 4% above optimum
- Year-round fill placement with rainy season
- 35 ft tall embankments
- Piedmont Residual Soils
 - Silts, Silty Sands
 - LL = NP to 65, PI = NP to 30
 - NMC = 8% to 45% +
 - Max. Dry Density ~ 110 pcf
 - OMC ~ 12%

Solution - Soil Cement

Modification: Temporary
Reduces soil plasticity
Increases strength
Stabilization: Permanent
Permanent strength increase
Increased resilient modulus
Reduce shrink/swell

Freeze/thaw resistance

Solution - Soil Cement

Most benefit in granular soils
Formation of calcium silicate hydrate
Dose depends on strength, durability, soil type

Why not Lime?

Solution – Maryland SHA Concerns

Pavement Subgrade
Performance
Durability
Slope Stability
Compressibility
Leachate
Landscaping

Solution – Zoned Embankment

Zoned Embankment Concept

Add cement to core soils:

- Reduce compacted fill density while:
 - Achieving soil strength
 - Reducing compressibility
- Modify soil index properties
 - Reduce plasticity
 - Improve workability
- Allow fill placement at high moisture contents

Analyses

Slope stability

Global embankment slope stability: FS>1.3 Cohesion = 720 psf

UCS > 10 psi

Analyses

Embankment loads

- Max embankment height of 35-ft, 32.5-ft to TOS
- Max Overburden Pressure = 120 pcf*32.5 ft + 250 psf (traffic load) + 325 psf (pavement section) = 4,475 psf = 31 psi
- 31 psi * 1.3 (FS) = 40 psi

Results

- Laboratory tests
- Samples at 0, 3, 4, 6%Cement
 - Classification
 - Proctors (Std/Mod)
 - Unconfined Compression
 - Molded to 85, 90, 95% of Std, 92% of Mod
 - Wet as possible to achieve density
 - Cured 1, 7, 14, 28 days
 - Consolidation

Unconfined Compressive Strength vs. Dry Density 7-Day Results

Unconfined Compressive Strength vs. Moisture Content 7-Day Results

Consolidation Comparison

Log Pressure (tsf)

Results – Field Procedures

Zoned embankment

- Cement dose of 3-percent
- Compact to 85% MDD per AASHTO T-99
- Dry density > 80 pcf
- Moisture content < 40%</p>
- Test strips
 - Establish effective construction methods
 - Establish QC tests
 - Verify core properties are achieved

Results – Quality Control Procedures

Visual observations

- Perform >10 nuclear density tests per lift/day
- Mold compressive strength test cylinders
 - +/- 2 pcf of lowest density recorded
 - Cure and compressive strength test at 7 days
 - UCS > 40 psi at 7 days

Results

Success!

- Contractor could place fill year round
- Met project schedule
- Overall cost savings

Other Methods - Compaction Based

Contract B used an alternative method

- Same 3% for embankment / 5% for pavement subgrade but eliminated the zone concept
- If compaction criteria met, considered cement as modification only
- If compaction criteria not met, utilized strength based approach
- Transferred landscaping risks to subcontractor

This flexibility was valuable to the contractor

Due to increased durability and reliability, the contractor used soil cement even when not necessary

Lessons Learned

 Considering cement modification/stabilization is an investment and can be time consuming

- Cement can be useful at low doses
- The same cement used in laboratory study must be used in the field operations
- Field observations are critical to evaluation

The best Quality Control plans evaluate the work based on field observations and use laboratory testing to confirm field results

Lessons Learned

Feasibility Study, Operation Plan, and Quality Control Plan must be developed full circle

- This can be a challenge
- Consider broad Feasibility Study (broader study early means more options later)
- Expect variations
- Use a Factor of Safety to account for variability in field/lab methods

QUESTIONS?

