HARD CORE
A Zoned Embankment Case Study
Bill Billiet, P.E.

Geo 3T2
2013
Zoned Embankment Overview

- Introduction
- Problem
- Solution
- Analyses
- Results
- Other Methods
- Lessons Learned
Introduction

- 18.8 miles – I-270/I370 to I-95/US-1
- 6-lane divided highway with 8 full interchanges
Introduction

Purpose:
- Link existing and proposed development
- State-of-the-art, limited/controlled access
- Minimal environmental impact
Problem - Earthwork Conditions

Fill Requirement: 92% MDD (Modified) at +/- 2% OMC

- Average natural moisture content of on-site soils 4% above optimum
- Year-round fill placement with rainy season
- 35 ft tall embankments
- Piedmont Residual Soils
 - Silts, Silty Sands
 - LL = NP to 65, PI = NP to 30
 - NMC = 8% to 45% +
 - Max. Dry Density ~ 110 pcf
 - OMC ~ 12%
Solution - Soil Cement

- **Modification: Temporary**
 - Reduces soil plasticity
 - Increases strength

- **Stabilization: Permanent**
 - Permanent strength increase
 - Increased resilient modulus
 - Reduce shrink/swell
 - Freeze/thaw resistance
Solution - Soil Cement

- Most benefit in granular soils
- Formation of calcium silicate hydrate
- Dose depends on strength, durability, soil type

Why not Lime?
Solution – Maryland SHA Concerns

- Pavement Subgrade
 - Performance
 - Durability
- Slope Stability
- Compressibility
- Leachate
- Landscaping
Solution - Zoned Embankment

TYPE II FILL SOILS OR BETTER COMPACTED
PER PROJECT SPECIFICATIONS - OR -
5% CEMENT MODIFIED SOIL

PAVEMENT SECTION

PAVEMENT SECTION

25’ TYP

TYPE II FILL SOILS OR
BETTER COMPACTED PER
PROJECT SPECIFICATIONS

3' MIN

3' MIN

2H:1V

2H:1V

3% CEMENT MODIFIED SOIL
MIN 7 DAY UCS = 40 PSI

APPROVED
SUBGRADE
Solution

- **Zoned Embankment Concept**

Add cement to core soils:

- Reduce compacted fill density while:
 - Achieving soil strength
 - Reducing compressibility
- Modify soil index properties
 - Reduce plasticity
 - Improve workability
- Allow fill placement at high moisture contents
Analyses

- Slope stability
- Global embankment slope stability: $FS > 1.3$
 - Cohesion = 720 psf
 - UCS > 10 psi
Analyses

- Embankment loads
 - Max embankment height of 35-ft, 32.5-ft to TOS
 - Max Overburden Pressure = 120 pcf*32.5 ft + 250 psf (traffic load) + 325 psf (pavement section) = 4,475 psf = 31 psi
 - 31 psi * 1.3 (FS) = 40 psi
Results

- Laboratory tests
- Samples at 0, 3, 4, 6% Cement
 - Classification
 - Proctors (Std/Mod)
 - Unconfined Compression
 - Molded to 85, 90, 95% of Std, 92% of Mod
 - Wet as possible to achieve density
 - Cured 1, 7, 14, 28 days
 - Consolidation
Unconfined Compressive Strength vs. Dry Density
7-Day Results

Sample Description:
SANDY ELASTIC SILT

Optimum Moisture (%):
13.2

Max Dry Density (pcf):
110.9

Target 40 psi
Unconfined Compressive Strength vs. Moisture Content
7-Day Results

Sample Description:
SANDY ELASTIC SILT

Optimum Moisture (%): 13.2
Max Dry Density (pcf): 110.9

Target 40 psi
Consolidation Comparison

 Void Ratio, e

 Log Pressure (tsf)

 Pp' = 2.9 tsf (40 psi)

85STD
3PC85STD0day
3PC85STD7day
Results - Field Procedures

- Zoned embankment
 - Cement dose of 3-percent
 - Compact to 85% MDD per AASHTO T-99
 - Dry density > 80 pcf
 - Moisture content < 40%

- Test strips
 - Establish effective construction methods
 - Establish QC tests
 - Verify core properties are achieved
Results - Quality Control Procedures

- Visual observations
- Perform >10 nuclear density tests per lift/day
- Mold compressive strength test cylinders
 - +/- 2 pcf of lowest density recorded
 - Cure and compressive strength test at 7 days
 - UCS > 40 psi at 7 days
Success!

- Contractor could place fill year round
- Met project schedule
- Overall cost savings
Contract B used an alternative method

- Same 3% for embankment / 5% for pavement subgrade but eliminated the zone concept
- If compaction criteria met, considered cement as modification only
- If compaction criteria not met, utilized strength based approach
- Transferred landscaping risks to subcontractor

This flexibility was valuable to the contractor

Due to increased durability and reliability, the contractor used soil cement even when not necessary
Lessons Learned

- Considering cement modification/stabilization is an investment and can be time consuming.
- Cement can be useful at low doses.
- The same cement used in laboratory study must be used in the field operations.
- Field observations are critical to evaluation.

The best Quality Control plans evaluate the work based on field observations and use laboratory testing to confirm field results.
Lessons Learned

- Feasibility Study, Operation Plan, and Quality Control Plan must be developed full circle
 - This can be a challenge
 - Consider broad Feasibility Study (broader study early means more options later)
 - Expect variations
 - Use a Factor of Safety to account for variability in field/lab methods
Geology
Name the three types of rock.

1. Classic
2. Punk
3. Hard