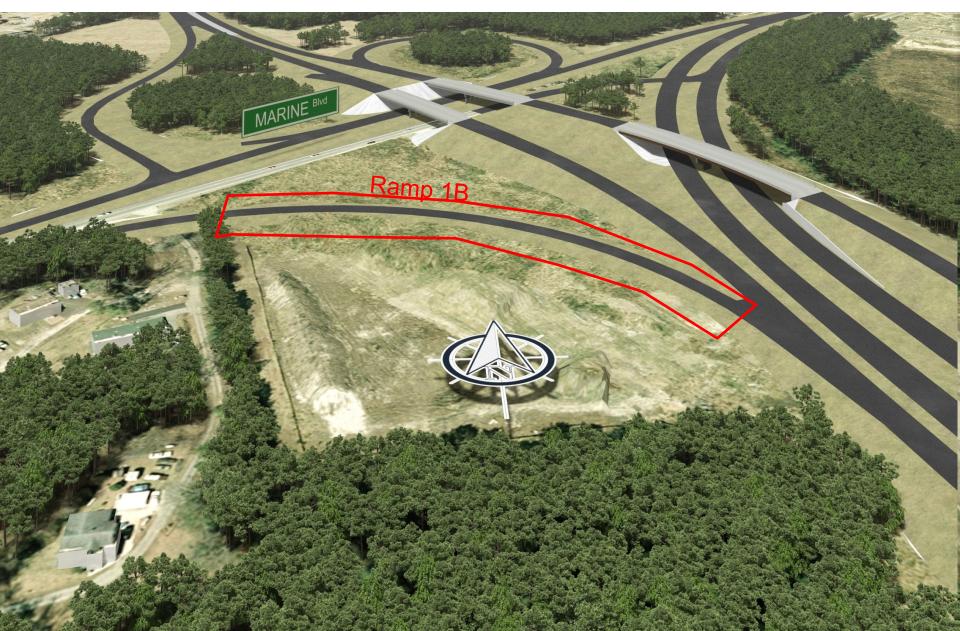
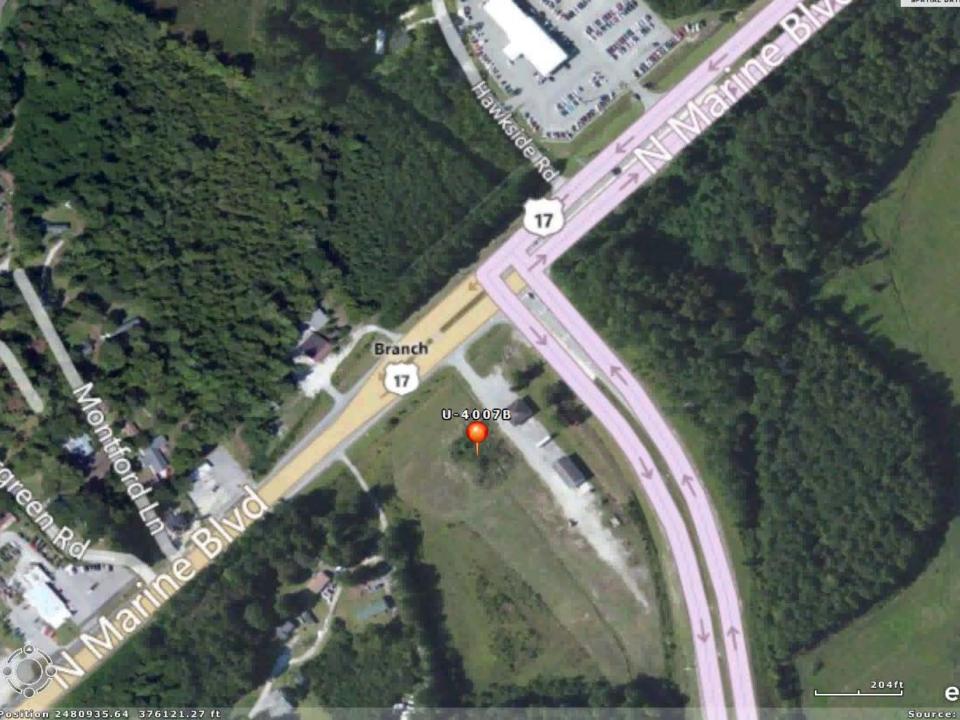

Bombs to Biphenyls

Removal and Remediation at the US17 Bypass Project in Jacksonville, North Carolina

Cyrus Parker, LG, PE, NCDOT GeoEnvironmental


Helen Corley, LG Associate Hydrogeologist

AMEC Environment & Infrastructure, Inc. Charlotte, North Carolina E-mail address: Helen.Corley@amec.com



U-4007B

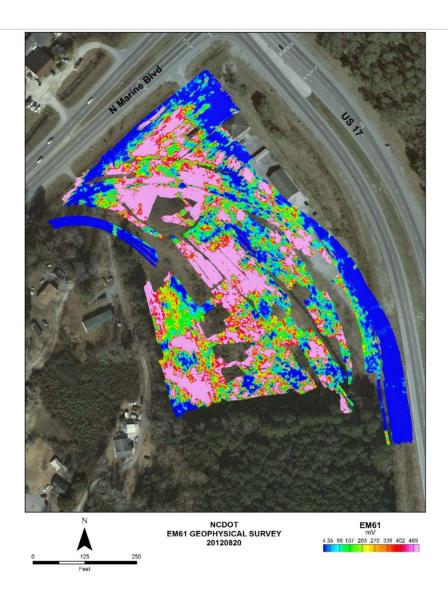
Digital Geophysical Mapping

- High Resolution Metal Detection
 - Geonics® EM61 MK2 (EM61)
 - Hemisphere SF 101 differential GPS
 - Archer® data logger
- Walked pedestrian accessible areas ~ 10.5 acres
- Data collected on lines with 0.5 foot intervals
- Average line spacing of 5 feet

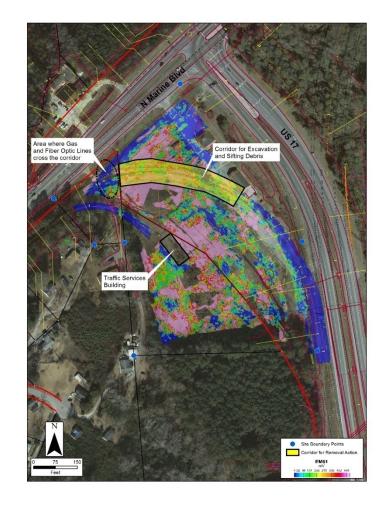
Digital Geophysical Mapping

Photos of spent ordnance collected during DGM

Photos of spent ordnance collected during DGM amec



Digital Geophysical Mapping Results



What are the options?

- 1. Excavate all the areas in pink
- Excavate some of the areas in pink
- 3. Excavate between the slope stakes for the ramp construction area

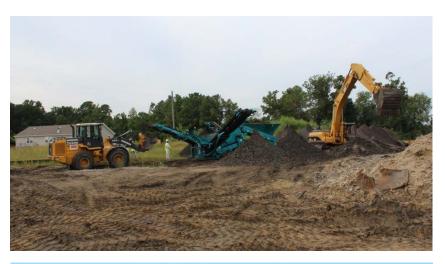
Our Guidance

Nine Person Field Team

Senior UXO Supervisor

UXO Safety
Officer/Quality
Control Specialist

UXO Tech III – Team Leader



Power Screen Warrior 800

Cultural & Munitions Debris

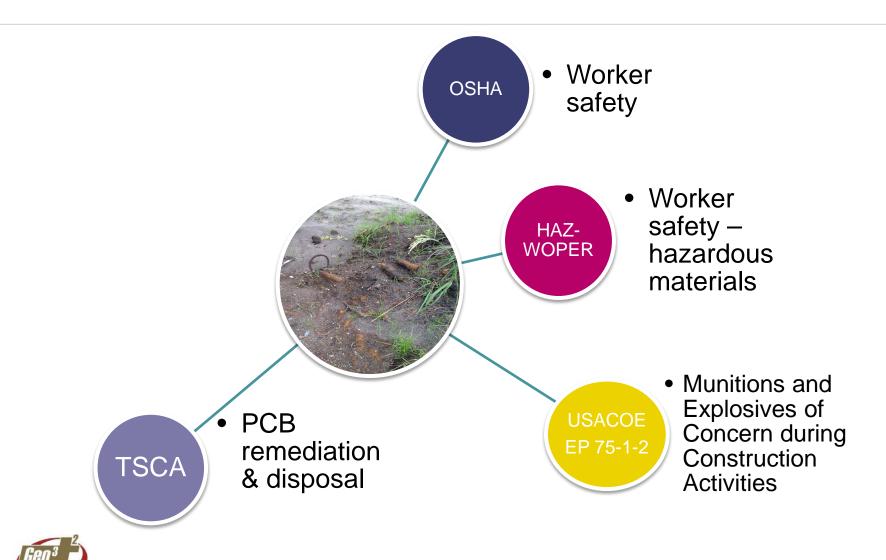
Could there be contamination?

Cracked Transformers observed

Battery casings observed

Odors Occasionally noted during Excavating

New Anecdotal Information


Collected a soil sample from four test pits (TP)

	Constituent	Units	TP-1	TP-2	TP-3	TP-4	
Metals	Lead	mg/kg	4670*	2770**	412	71.8	
	Aroclor-1242	μg/kg	1440	28600	654	2220	
PCBs	Aroclor-1254	μg/kg	4600	15800	1690	2880	
	Aroclor-1260	μg/kg	2480	6000	1510	1680	
	* TCLP Lead = 2.	56 mg/L					
	** TCLP Lead = 7	8.7 mg/L					

Our Guidance

So how did contamination change scope?

Baseline Blood Samples & Respirator Fit

Tyvecs, Dust Monitoring, Personal Meters

Wipe Samples in Field Office & on Eqpt

Vehicle & Eqpt Decontamination

Soil Handling

Soil Handling

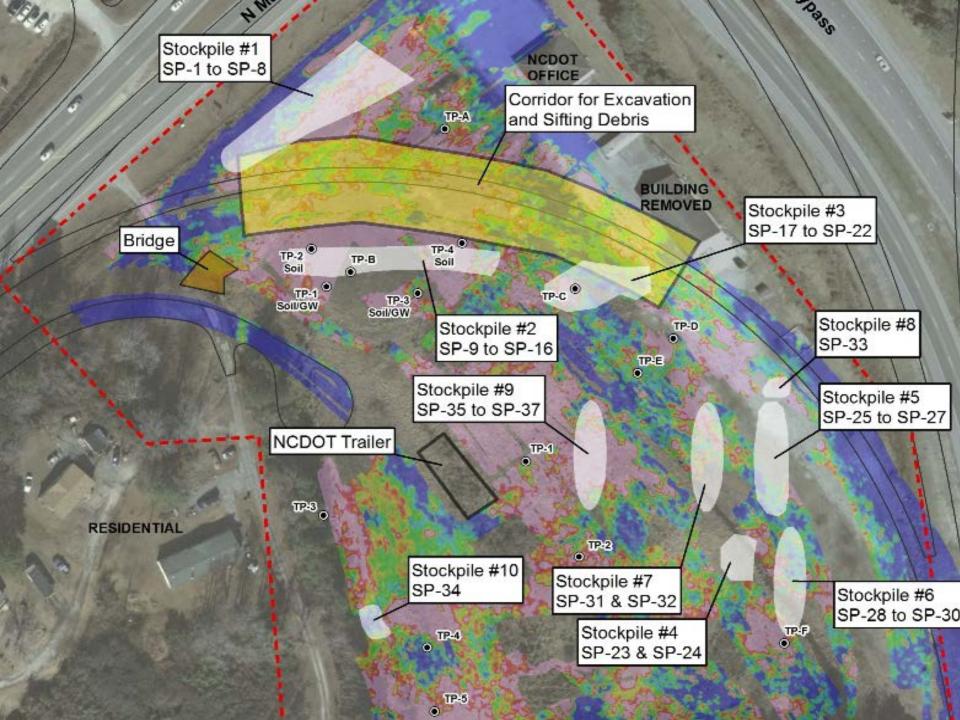
- Plastic
- Run-on
- Run-off
- Increased Sampling
- Wait for results

Variance Received

No inplace sampling occurred

Characterization for disposal derived from sifted soil

Collected 8
samples from
each 200 cubic
yards of
stockpile to be
composited



1		ı	I																			
METHOD	SAMPLE ID	SP-18	SP-19	SP-20	SP-21	SP-22	SP-23	SP-24	SP-25	SP-26	SP-27	SP-28	SP-29	SP-30	SP-31	SP-32	SP-33	SP-34	SP-35	SP-36	SP-37	RCRA
(units)	DATE																					Regulatory
	COLLECTED	10/17/12	10/17/12	10/17/12	10/17/12	10/17/12	10/19/12	10/19/12	11/5/12	11/5/12	11/5/12	11/12/12	11/12/12	1/12/12	11/12/12	11/12/12	11/26/12	11/26/12	11/26/12	11/26/12	11/26/12	Level"
7471B	Mercury	NA																				
6010C TCLP mg/L	Arsenic	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	5
	Selenium	0.0706 J	0.0396 J	0.0402 J	<0.200	<0.200	<0.200	<0.200	0.0379 J	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	0.0294 J	<0.200	0.0763 J	0.0733 J	0.0511 J	1
	Cadmium	0.0422 J	0.0534	0.0577	0.0567	0.0566	0.0182 J	<0.050	0.0618	0.0552	0.0589	0.105	0.150	0.151	0.198	0.224	0.154	0.0615	0.0979	0.105	0.106	1
	Lead	0.251 J	0.304	0.572	0.372	0.427	0.248 J	0.122	1.15	0.687	0.505	0.496	0.655	0.827	0.737	0.838	0.407	0.142	0.326	0.202	0.273	5
	Barium	0.731 J	0.767 J	0.84 J	0.742 J	0.714 J	0.295 J	0.267 J	0.527 J	0.501 J	0.522 J	0.926 J	1.15	1.15	1.05	1.22	0.968 J	0.443 J	0.850 J	0.927 J	0.948 J	100
	Chromium	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	0.0403 J	0.0337 J	0.0436 J	<0.100	0.0215 J	0.0224 J	0.0152 J	0.0163 J	0.0196 J	0.0248 J	0.0300 J	0.0216 J	0.0186 J	5
	Silver	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	0.0170 J	0.0498 J	0.0465 J	0.0415 J	0.0554 J	0.0523 J	0.0539 J	0.0469 J	0.0557 J	0.0282 J	0.0268 J	0.0285 J	0.0285 J	0.0301 J	5
	Aroclor-1242	<179	<179	<167	<173	<170	<37.4	<36.2				<285	<284	<615	<576	<591	<312	<319	<301	<323	<631	
	Aroclor-1248	700	671	810	828	975	34.7 J	201	553	903	563	809	1640	1550	2800	3340	1950	875	1160	1210	1420	
8082A	Aroclor-1254	868	892	948	1010	915	46.8	323	610	1050	758	1160	1750	2540	4350	3530	3450	1590	1810	2380	2140	
μg/Kg	Aroclor-1260	480	500	548	453	382	19.3 J	110	389	1060	436	805	1070	2340	4180	2750	3260	701	1220	1800	1790	
	AROCLOR TOTALS	2,048	2,063	2,306	2,291	2,272	100.8	634	1,552	3,013	1,757	2,774	4,460	6,430	11,330	9,620	8,660	3,166	4,190	5,390	5,350	50 mg/kg
8260B μg/Kg	Naphthalene	NA																				
	Acenaphthene	NA																				
	Anthracene	NA																				
	Benzo[a]anthracene	NA																				
8270D	Benzo[a]pyrene	NA																				
	Benzo[b]fluoranthene	NA																				
	Benzo[g,h,i]perylene	NA																				
	Benzo[k]fluoranthene	NA																				
	Bis(2-ethylhexyl) phthal	NA																				
	Butyl benzyl phthalate	NA																				
	Chrysene	NA																				
	Di-n-butyl phthalate	NA																				
	Dibenz(a,h)anthracene	NA																				
	Dibenzofuran	NA																				
	Fluoranthene	NA																				
	Fluorene	NA																				
	Indeno[1,2,3-cd]pyrene	NA																				
	Phenanthrene	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	
NI .	Pyrene	NA																				

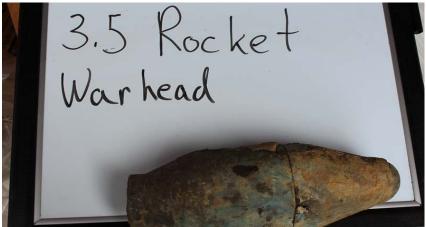
Geo.

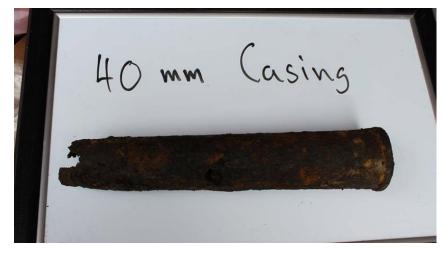
23

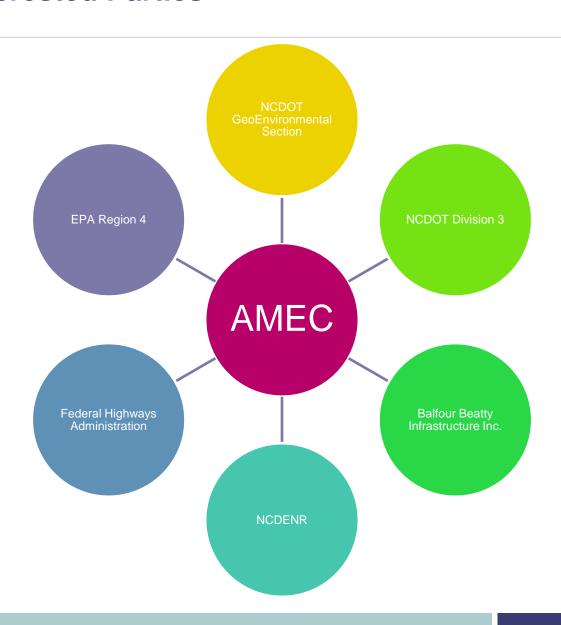
Challenge – LEAD STABILIZATION NEEDED

- Offsite disposal as hazardous \$430/ton
- Onsite stabilization on ground \$85/ton
- Onsite stabilization in roll offs \$270/ton

- 20 roll off bins were filled from stockpiles and transported to other part of the site
- Portland cement stabilization agent
- 22 tons soil in each roll off box







My personal favorite

Lots of Interested Parties

Challenge – Clay Clogs the Sifter

- Clay formed balls around ordnance
- Some soil piles had to be sifted more than once

Challenge - WEATHER

Ramp 1B

Questions & Discussion

