Extended Model of Cavity Expansion Theory for Evaluating Skin Friction of Tapered Piles in Sands

Suman Manandhar and Daisuke Suetsugu Institute of Lowland and Marine Research (ILMR), Saga University Noriyuki Yasufuku Department of Civil Engineering, Kyushu University

> The 7th Geo³ T², NCDOT, Cary, USA April 4-5, 2013

Outline of the Presentation

- Skin friction and radial stress are highly influenced by tapered piles with compared to conventional piles.
- A <u>small increase in the degree of tapering</u> can achieve <u>higher skin</u> <u>friction</u>.
- The mobilized mechanism demonstrates a good pressure effect when penetrated downward in a frictional mode for sands.
- The tapering and wedging effects are responsible for *increasing* the *normalised skin friction* and *normalized lateral stresses*.

- May be due to a lack of awareness of their basic existence together with a lack of modern and reliable analytical methods, very few researches have been carried out.
- A number of experts in geotech proposed theoretical methods using a cavity expansion theory.
- Vesic` (1972): Used to solve an infinite soil body by keeping volume change at the same soil at same density.

- Hughes et al. (1977): Assumed the small elastic deformation in the plastic zone when a limiting value of stress ratio reached after elastic deformation.
- Carter et al. (1986): Approximates a steady state deformation mode at *very large deformations* for small deformation problems.
- Yu and Houlsby (1991): The most closed form and <u>complete</u> solution for *large straining* condition for <u>cylindrical cavity</u> <u>expansion</u> in an <u>ideal elastic-plastic model</u>.

Pile geometry

Types of Model Piles	Naming	L mm	D _t mm	d mm	°	FRP reinforcement direction
Smallest model steel piles	S'	345	13	13	0.00	
	T ₁ ′	45	20	13	0.70	
	T ₂ ′	345	28	13	1.40	
Smaller	S	500	25	25	0.00	na
model steel piles	T-1	500	35	25	0.70	na
	T-2	500	45	25	1.40	na
Prototype FRP piles	FC	1524	168.3	168.3	0.00	na
	T-3	1524	170.0	198.0	0.53	0°
	T-4	1524	159.0	197.0	0.71	0°
	T-5	1524	155.0	215.0	1.13	0°

L: length of pile; D_t : diameter at the pile head; d: pile tip diameter; FRP: fiber-reinforced polymer; α : angle of tapering; na: not applicable

Outline of Pile Loading

- Model test filled with colored TO (I_D=0.8) sand at equal interval and penetrated fully up to 10 cm; then put in water bath to prevent from failure of model ground when chamber was split up.
- Trimmed soil carefully to observe mobilized mechanism.

S' ($\alpha = 0$ °)

 T_1' (α =0.7 °)

 $T_{2}' (\alpha = 1.4 ^{\circ})$

a = effective radius of influence, increased with tapering angle; b = convex heave due to effect of pile, narrowed with tapering angle; and c = failure tip influenced zone, increased with tapering angle

Visual Interpretation

that gives a strong evidence of *increases* in *skin friction* and *lateral stress* with *minimizing* the *failure zone* effectively.

Merits of Laboratory scale Pile Loading Tests

 D_{t}

d

 $P_{S} = P_{T} - P_{R}$

Skin friction and unit skin friction

- P_{S} : Total skin friction P_{T} : Total load bearing P_{B} : Total end bearing
 - Unit skin friction, $f_s = \frac{1}{2}$

$$\frac{(D+\alpha)}{2}$$

$$A_{s} = \pi D_{av} (L + \Delta L)$$

A_s : surface area

 $D_{av}\!\!:$ average diameter of pile head (D_t) and tip (d)

- D_{av} L: Effective length of pile
 - Δ L: Incremental depth of pile penetration

Skin friction increases with increasing tapering angle.

Unit skin friction also maintains the same trend.

Effects of lateral earth pressure

Radial distance from the center of the pile normalized by dividing distance of transducers to the pile tip radius (r/r_n)

Tapering effects are *higher* in the most tapered piles adjacent to pileground interface

- The proposed model was extended after Kodikara and Moore (1993); the model was incorporated for determination of skin friction using *cylindrical cavity expansion theory* by Yu and Houlsby (1991).
- Generally, one of the soil parameters, either angle of internal friction or dilatancy angle is assumed to be constant.
- However, the stress-dilatancy relationship is interdependent on the confining pressure, relative density and angle of internal friction.

Concept of Determination of Skin Friction

After Kodikara & Moore (1993)

the vertical pile movement u_p at any point X on the pile-ground interface > the vertical ground movement u_g at the corresponding point Y. While the pile is displaced from point X to X', the ground moves from point Y to Y', obtaining the lateral movement **v**.

Pile ground slips but exhibits elastic deformation

20

$$\tau_x = \frac{K_e \tan \alpha \tan(\phi_i + \alpha)u_p + \sigma_0 \tan(\phi_i + \alpha) + c'_i}{1 + \frac{K_e r_m}{G} \tan \alpha \tan(\phi_i + \alpha)}$$

when $(u_p > (u_p)_Y)$ or $\sigma > \sigma_Y$, the plastic zone is developed along with slippage to obtain an elastic perfectly plastic pile-ground interface and plastic zones extends more. In this case, the radial stress (σ) will be changed into the form:

$$\sigma = \sigma_Y + \int_{vY}^v K_p \, dv$$

Where, v_{γ} can be computed using $(u_p)_{\gamma}$ and $(\tau_{x_p})_{\gamma}$ which is the vertical shear stress when $u_p = (u_p)_{\gamma}$. Then, the corresponding vertical shear stress, τ_x can be expressed as:

$$\tau_x = \left(\sigma_Y + \int_{vY}^{v} K_p \, dv\right) tan(\phi_i + \alpha) + c'_i$$

Stress-Dilatancy Relationship

- Generally, the dilatancy angle is considered to be zero for evaluating large strain analyses.
- But the real ground behaves the angle of internal friction and the rate of dilatancy at the critical state are as interdependent functions of *density* and *effective stress*.
- The *density and confining pressure* change significantly when a tapered pile penetrates with settlement ratios.
- The confining pressure increases with *increasing* relative density together with the angle of internal friction and dilatancy.
- Therefore the stress-dilatancy property is inserted in the cavity expansion theory (Yu and Houslby, 1991) and proposed model for determination of the *skin friction* by Kodikara and Moore (1993).

Stress-Dilatancy Relationship (Bolton, 1986, 1987)

 $\phi'_{max} - \phi'_{cv} = 0.8 \psi_{max} = 5 I_R^o$ and, $I_R = I_D(10 - \ln p') - 1$

- Where, ϕ'_{max} , ϕ'_{cv} , ψ_{max} , and I_R^o are the maximum angle of friction, the angle of friction at critical states, maximum dilation angle and the relative dilatancy index at plane strain.
- The relative dilatancy index ${\rm I_R}$ is a function of relative density ${\rm I_D}$ and mean effective stress p'.
- A plastic zone will be obtained at the cavity wall within the region a
 ≤ r ≤ b, with an *increment of cavity pressure* p. By *partitioning elastic and plastic regions*, the stress component at the plastic
 region that satisfies the equilibrium condition as:

$$p' = -p_0 b^{\frac{(\alpha'-1)}{\alpha'}} r^{-\frac{(\alpha'-1)}{\alpha'}}$$

At the <u>boundary of plastic region</u> where $r \le a$, the effective mean stress can be modified to:

 $p'=-p_0R$

- The load transfer method proposed by Coyle and Reese (1966) [based on Seed and Reese (1957)] is used to estimate the skin friction by <u>inserting</u> a stress-dilatancy property as the <u>extended model</u>.
- A small settlement at the pile base is *specified* and the axial load at the *top of* this *segment* is iteratively *synchronized* to *satisfy* the *equilibrium condition,* and the process undergoes to *next segment* to calculate the *settlement*.

Results

S/D The vertical shear stress increases with increasing *tapering angles* for different types of sandy ground.

For

increases with the same ratio irrespective of soil type

Normalized shear stress of the most tapered pile shows remarkable improvement on skin friction.

Average radial stress of *the most tapered pile* increased remarkably with settlement ratios.

Parametric Study and Validity of the Model

A real type Rybnikov (1990) pile and prototype pile (Sakr et. al, 2004, 2005, and 2007) are accomplished to check and validate the applicability of the proposed model.

	Rybnikov Pile Material									
Parameters	Default (α = 2)	α = 0	α =1.2	α = 2.4	α = 2.66	α = 1	α = 3	α = 4	α = 5	
G, MPa	Formula	Formula	Formula	Formula	Formula	Formula	Formula	Formula	Formula	
C, KPa	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	
c _i , KPa	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	
φ°	Iteration	Iteration	Iteration	Iteration	Iteration	Iteration	Iteration	Iteration	Iteration	
ψ°	Iteration	Iteration	Iteration	Iteration	Iteration	Iteration	Iteration	Iteration	Iteration	
L, mm	4500	4500	4500	4500	4500	4500	4500	4500	4500	
α°	2	0	1.2	2.4	2.66	1	3	4	5	
I _D	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	
σ _{o,} KPa	25	25	25	25	25	25	25	25	25	
φ′ _{cv}	32°	32 °								

Skin friction increased remarkably together with *increasing tapering angle* at settlement ratio of 0.1.

Normalized average vertical shear stress increased with *increasing dilatancy angles*.

Normalized average vertical shear stress increased with *increasing relative densities* of the ground.

The measured and predicted *skin frictions* lie near to each other with increasing settlement ratios.

The measured and predicted *unit skin frictions* validated for different types of *piles* and *sandy ground*.

- The mobilized mechanism of skin friction shows that the *effective* radius of the influenced zone around the pile shaft increases in line with increases in the tapering angle.
- The *extended model* with the inserted *stress-dilatancy property* can predict <u>skin friction</u> using cylindrical cavity expansion theory in closed form solution and can easily determine with simple fundamental properties of soils.
- The *predicted* skin friction using the extended model shows <u>good</u> <u>agreement</u> with <u>measured</u> skin friction from various sources.

<u>References</u>

- Manandhar, S., Yasufuku, N., and Omine, K. *Application of cavity expansion theory for evaluating skin friction of tapered piles in sands*. International Journal of Geo-Enginering 4 (3), 2012, pp.5-17.
- Manandhar, S. and Yasufuku, N. *Evaluation of skin friction of tapered piles in sands based on Cavity Expansion Theory*. Memoirs of the Faculty of Engineering, Kyushu University 71 (4), 2011, pp.101-126.
- Manandhar, S. *Bearing capacity of tapered piles in sands*. PhD Thesis, Kyushu University, 2010 (Unpublished).
- Manandhar, S., Yasufuku, N., Omine, K., and Taizo, K. *Response of tapered piles in cohesionless soil based on model tests*. Journal of Nepal Geological Society 40, 2010, pp. 85-92.
- Manandhar, S., Yasufuku N., and Omine, K. *Tapering effects of piles in cohesionless soil*. In: Proceedings: 4th Japan-China Geotechnical Symposium on Recent Developments of Geotechnical Engineering, Okinawa, Japan, 2010, pp. 477-482.
- Manandhar, S., Yasufuku, N., and Shomura, K. *Skin Friction of Taper-shaped Piles in Sands*. In: Proceedings of the ASME, 28th International Conference on Ocean, Offshore and Arctic Engineering (OMAE), Honolulu, Hawaii, USA, 2009, pp. 93-102.
- Manandhar, S., Yasufuku N., Omine K., and Qiang, L. *Mobilized mechanism of skin friction of tapered piles in sand*. In: Proceedings: International Joint Symposium on Geo-Disaster Prevention and Geoenvironment in Asia JS-Fukuoka 2009, Fukuoka, Japan, 2009, pp. 171-178.
- Kodikara, J.K., Moore, I.D. *Axial response of tapered piles in cohesive frictional ground*. Journal of Geotechnical Engineering ASCE 119, 1993, pp. 675-693.
- Bolton, M.D. *The Strength and Dilatancy of Sands*. Géotechnique 36 (1), 1986, pp. 65-78.
- Bolton, M.D. Discussion on the Strength and Dilatancy of Sands. Géotechnique 37 (2), 1987, pp. 219-226.
- Coyle, H. M., Reese, L. C. *Load Transfer for Axially Loaded Piles in Clay*. International Journal of Soil Mechanics and Foundation Div–ASCE 92 (1), 1966, pp. 1-26.
- Seed, H. B., and Reese, L. C. The action of soft clay on friction piles. Transaction, ASCE 122, 1957, pp. 731-754.
- Sakr, M., El Naggar, M.H., and Nehdi, M.L. *Load transfer of fibre-reinforced polymer (FRP) composite tapered piles in dense sand*. Canadian Geotechnical Journal 41 (1), 2004, pp.70-88.
- Sakr, M., El Naggar, M.H., and Nehdi, M.L. *Uplift performance of FRP tapered piles in dense sand*. IJPMG-International Journal of Physical Modelling in Geotechnics 2, 2005, pp.1-16.
- Sakr, M., El Naggar, M.H., and Nehdi, M.L. *Wave equation analyses of tapered FRP-concrete piles in dense sand*. Soil Dynamics and Earthquake Engineering 27, 2007, pp. 166-182.
- Rybnikov, A.M. *Experimental Investigation of Bearing Capacity of Bored-cast-in-place Tapered Piles.* Soil Mechanics and Foundation Engineering 27 (2), 1990, pp. 48-52.

Thank you for

your kind attention !!!