Outline - Problem statement - Objective - Background - Results - Proposed Specifications - Conclusions ## **Problem Statement** - WisDOT is interested in how changes in ASTM standards for puncture testing of geotextiles can be incorporated within DOT specifications. - There is little understanding how the results from D6241 (new) correlate to D4833 currently used. - Also interest in understanding how UV/elevated temperature exposure and freeze-thaw influence the puncture resistance. ## **Objective** Multi-phase approach to investigate how geotextiles respond to ASTM puncture standards. Primary objective is to help WisDOT develop new puncture strength recommendations. ## **Background** - Geotextiles are used in numerous infrastructure applications including separation, filtration, reinforcement, protection or drainage. Mostly are made of polymeric materials that can be woven or non-woven. - One of the main characterization parameters is the puncture strength which correlates the ability of the material to withstand the installation and service conditions. ## **Experimental Program** - Phase 1 (125 tests): PP woven, non-woven with mass/area of 4 12 oz/yd². Understand fundamental failure mechanics between woven/non-woven also includes freeze-thaw. - Phase 2 (405 tests): WisDOT specimens from 29 different projects with variety in application type, fabric and weave structure. Main bulk of database to compare puncture strength from D6241 and D4833. - Phase 3 (60 tests): Using WisDOT provided specimens from 6 types exposed to elevated temperature, moisture and UV testing. Develop guidance for UV exposure. # Phase 2 ASTM Comparison on WisDOT specimens - 405 test specimens from 29 different projects across different types and manufacturers. - Specimens tested at UWM to both ASTM D4833 and D6241. Compared to WisDOT records from D4833. | Geotextile Test Result | | Correlation:
PS(CBR) = α × PS(Pin) | R ² | |------------------------|----------|---------------------------------------|----------------| | Phase I | Woven | $PS(CBR) = 7.46 \times PS(Pin)$ | 0.98 | | | Nonwoven | $PS(CBR) = 5.19 \times PS(Pin)$ | 0.98 | | Phase II | Woven | $PS(CBR) = 4.28 \times PS(Pin)$ | 0.85 | | | Nonwoven | $PS(CBR) = 5.57 \times PS(Pin)$ | 0.85 | | Combined (Phase | Woven | $PS(CBR) = 6.36 \times PS(Pin)$ | 0.91 | | I and Phase II) | Nonwoven | $PS(CBR) = 4.90 \times PS(Pin)$ | 0.92 | PS(CBR): CBR Puncture Strength (N, lbs) from ASTM D6241 PS(Pin): Pin Puncture Strength (N, lbs) from ASTM D4833 α: Correlation Constant # 3,000 2,500 2,500 1,500 1,000 Pin ASTM D4833 (lbs) Non-Woven ## **Current and Proposed WisDOT Specification** | | Minimum Puncture Strength (Average) | | | | | |--|---|-----------|---|-------------|--| | | Current WisDOT | | Proposed WisDOT | | | | Geotextile Type | Specifications Based on
ASTM D4833 (Pin) | | Specifications Based on
ASTM D6241 (CBR) | | | | | 1bs. | N | lbs. | N | | | Subgrade Aggregate Separation (SAS) | 70 | 300 | 340 | 1500 | | | Marsh Stabilization (MS) | NA | NA | NA | NA | | | Drainage Filtration (DF), Schedule A | 40 | 175 | 190 | 840 | | | Drainage Filtration (DF), Schedule B | 70 | 300 | 340 | 1500 | | | Drainage Filtration (DF), Schedule C | 70 | 311 | 340 | 1500 | | | Subgrade Reinforcement (SR) | NA (145)* | NA (650)* | NA (700)** | NA (3100)** | | | Riprap (R) | 80 | 350 | 390 | 1700 | | | Heavy Riprap (HR) | 100 | 440 | 490 | 2100 | | | Modified Subgrade Aggregate
Separation Type C (SAS-C) | 70 | 300 | 340 | 1500 | | | Embankment Stabilization (ES) | NA | NA | NA | NA | | ## **Conclusions** - All types of geotextiles exhibited puncture strength values, whether pin or CBR, that were consistent within each group - Woven PP materials exhibit a CBR puncture strength approximately double that of nonwoven PP materials using D6241. - Results from D6241 generally have a lower CV and hence less variability than the results from D4833. ^{**} Based on same data from WisDOT project documents ## **Conclusions** - Statistical correlations were developed to estimate the CBR puncture strength values from the pin test with a reasonable accuracy. - Equation 1 can be used to estimate the CBR puncture strength based on pin test puncture strengths of PP nonwoven materials only and Equation 2 can be used to estimate the CBR puncture strength based on pin test puncture strengths of PP woven materials only. ## **Conclusions** CBR puncture strength test specifications were developed and proposed for WisDOT ## **Acknowledgements** - WHRP & WisDOT financial support - WHRP Flexible TOC Chair Andrew Zimmer and POC members Jeffrey Horsfall, Robert Arndorfer - TenCate Geosynthetics - Jay Schabelski of Romus Inc