Settlement & Vibration Monitoring for Transmission Line Foundation Installation

R. Heath Forbes, P.E. – S&ME, Inc. William M. Camp, III, P.E. – S&ME, Inc.

Presented By:

Heath Forbes, P.E. Project Engineer S&ME, Inc. Charleston, SC <u>hforbes@smeinc.com</u> 843-884-0005

Scenario

- New 4-mile long transmission line constructed through small town in SC Coastal Plain
- Proposed alignment passed near numerous residential and commercial structures.

Project Details

- Involved construction of 54 new poles.
- Existing timber poles replaced with taller, prefabricated steel poles.
- Vibratory "caisson" foundations selected to support new poles.
- Caissons were installed with vibratory hammers.
- Foundation locations generally within 50 ft from nearby structures, with some as close as 8 ft to 20 ft.

Transmission Line Plan

Pros and Cons of Vibratory Caissons

• Pros:

- Quick installation.
- Less expensive than alternative drilled foundations.
- Easily customized for optimum design (different diameters and lengths at each foundation location).
- Cons:
 - Early refusal requires field retrofit.
 - Vibratory installation has potential to cause disturbance or damage.

Vibratory Caisson Foundation

Varies – 28 – 54 inches

Vibratory Caisson Foundation

Vibratory Caisson Foundation

Subsurface Conditions

- A widely-spaced exploration consisting of 20 Cone Penetrometer Test (CPT) Soundings was performed.
- Generally loose to medium dense slightly silty to silty sands within upper 40 to 50 feet.
- Tip stresses in the sands were generally 15 to 150 tsf.
- Groundwater was encountered at depths of 9 to 15 ft below ground surface.

Example CPT Logs

NCDOT 7th Annual Geo³T² Conference – Cary, NC Heath Forbes – April 4, 2013

Example CPT Logs

NCDOT 7th Annual Geo³T² Conference – Cary, NC Heath Forbes – April 4, 2013

Construction Concerns

- Vibrations potential for damage to nearby structures.
- Vibrations human perception
- Settlement of loose sands.
- Hard driving may create higher vibrations.
- Proximity of foundation locations to nearby structures.

Would the construction vibrations be detrimental to the nearby structures?

Monitoring Program

- Vibration Monitoring:
 - Measure ground vibrations with seismographs.
- Settlement Monitoring:
 - Pre- and Post-installation ground elevation surveys.
- Limited Condition Assessment of Structures:
 - Visual and photographic documentation of existing condition of nearby structures.
 - Performed from utility Right-Of-Way and publicly accessible areas.

Human Perception

- People sense or respond to very low vibrational intensities.
- Noise is often more disturbing than the vibration alone.
- Combination of noise and vibration draw attention to existing damage previously unnoticed.

Human Perception Thresholds

(from Bay, 2004)

(after AASHTO R 8-96, 2008)

Structural Response

- Multiple published criteria for evaluating the damage potential of vibrations – majority developed for blasting/mining applications.
- Different basis for analysis

— Peak Particle Velocity (PPV)

- Weighted Root Mean Square Accelerations

Common Vibration Criteria

- Frequency-dependent criterion
 - U.S. Bureau of Mines (Siskind et al., 1980).
 - OSMRE (Rosenthal, et al., 1987).
 - BS 7385 (British Standards Institute, 1993).
 - DIN 4150 (German Standards Org., 1999).
- Other frequency-independent criterion (e.g. Oriard, NAVFAC DM-7_02, Eurocode, Dowding, Bay, Jones and Stokes, etc.)

USBM Criteria

- USBM Report of Investigation 8507 (Siskind et al., 1980)
- Adopted by AASHTO and many others
- Limit corresponds to the development of hairline cracks in plaster or drywall joints (i.e., not structural damage)

(from Oriard, 1999)

OSMRE Criteria

- OSMRE 1987 Office of Surface Mining and Reclamation and Enforcement (Rosenthal et al., 1987).
- Similar to USBM criteria
- Does not distinguish between construction material types.

(from Oriard, 1999)

Comparison of Frequency Dependent Criteria

(from Hajduk et al., 2009)

Oriard's and NAVFAC Criteria

	Range of Common Residential Criteria and Observed Side Effects			
0.5 ips	Bureau of Mines recommended guideline for plaster-on-lath construction			
(1.27 cm/s)	near surface mines (long-term, large-scale blasting operations, low-fre-			
(12.7 mm/s)	quency vibrations (RI 8507).			
0.75 ips (1.91 cm/s) (19.1 mm/s)	Bureau of Mines recommended guideline for sheetrock construction near surface mines (RI 8507).			
1.0 ips (2.54 cm/s) (25.4 mm/s)	OSM regulatory limits for residences near surface mine operations at dis- tances of 301-5000 ft. (long-term, large-scale blasting).			
2.0 ips	Widely accepted limit for residences near construction blasting and quar-			
(5.08 cm/s)	ry blasting (BuMinBulletin 656, BuMin RI 8507, various codes, specifica-			
(50.8 mm/s)	tions and regulations). Also allowed by OSM for frequencies above 30 Hz.			
5.4 ips (13.7 cm/s) (137 mm/s)	Minor damage to the average house subjected to quarry blasting vibrations. (BuMin Bulletin 656).			
9 ips	About 90% probability of minor damage from construction or quarry			
(22.9 cm/s)	blasting. Structural damage to some houses. Depends on vibration			
(229 mm/s)	source, character of vibrations and the house.			
20 ips	For close-in construction blasting, minor damage to nearly all houses,			
(50.8 cm/s)	structural damage to some. A few may escape damage entirely. For low-			
(508 mm/s)	frequency vibrations of long duration, major damage to most houses.			

10.0 -9.0-MAJOR DAMAGE (FALL OF PLASTER. 80- SERIOUS CRACKING) IN/SEC. 7.0-MINOR DAMAGE 6.0 -Т FINE PLASTER VELOCITY CRACKS, OPENING OF OLD CRACKS) 5.0 -4.0 CAUTION PARTICLE 30-2.0 SAFE 1.0-0

(from Oriard, 1999)

(from NAVFAC DM-7, 1986)

Dowding's Criteria

- "Threshold damage" defined as development of hairline cracks.
- PPV of 0.5 ips or less will not cause threshold damage.

(from Dowding, 1996)

Bay's Criteria

(from Bay, 2004)

Eurocode Criteria

- Distinction in threshold for transient and continuous vibrations.
- Recommends 50% reduction in PPV threshold for continuous vibrations.

Type of Property	Continuous Vibration	Transient Vibration
Ruins, building of architectural merit	0.08	0.16
Residential	0.2	0.4
Light Commercial	0.4	0.8
Heavy Industrial	0.6	1.2
Buried Services	1.0	1.6

(after Piling Handbook, 2005)

Peak Particle Velocity, in/sec

Jones and Stokes' Criteria

Structure and Condition	Maximum PPV mm/sec (in/sec)
Fragile Buildings	2.5 (0.1)
Historic and Some Old Buildings	6.4 (0.25)
Older Residential Structures	7.6 (0.3)
New Residential Structures	12.7 (0.5)
Modern Industrial/Commercial Buildings	12.7 (0.5)

(Jones and Stokes, 2004)

Summary of Vibration Criteria

- Wide lack of agreement between criteria.
- Recommended maximum peak particle velocities range from 0.2 to 5.5 ips.
- Most of the common thresholds were developed for blasting scenarios.
- Dowding (1996) states blast-related thresholds are appropriate for most construction-generated vibrations – except for activities producing continuous vibrations.

What's Appropriate for This Project?

 According to Oriard (1999), structures are affected more by environmental effects (e.g. temperature and humidity) than vibrations with relatively high PPV's.

Environment Effects on Structures

NCDOT 7th Annual Geo³T² Conference – Cary, NC Heath Forbes – April 4, 2013 (from Oriard, 2004)

Vibrations from Common Everyday Activities

(from Oriard, 2004)

What's Appropriate for This Project?

- According to Oriard (1999), structures are affected more by environmental effects (e.g. temperature and humidity) than vibrations with relatively high PPV's.
- Low PPV threshold seemed overly conservative.
- Duration of the continuous vibrations would be relatively short.

Selected Criteria

- The USBM criteria was deemed reasonable as an initial action level.
- Frequency-based threshold, which was deemed appropriate for the project.
- Inherently conservative (i.e. PPV threshold established for cosmetic cracking, not structural damage).

Monitoring Details

- Three vibration monitoring points established at each foundation location - coincident to distance from nearby structures.
- Settlement monitoring performed at each vibration monitor location.
- Limited structural condition survey performed from utility right-of-way and other public access areas.
- Considering the uncertainty of the criteria and potential vibrations, construction began in less critical areas (furthest from structures).

Monitoring Equipment

- Instantel Blastmate and Minimate Seismographs
 - Triaxial geophone array
 - Measured PPV and Hz in three directions – longitudinal, transverse, and vertical.
- Trimble 5603 Robotic Total Station with Recon Datalogger

Foundation Installation Details

- 54 foundations ranging in diameter from 28 to 54 inches and lengths from 20 to 30 feet.
- Most foundations within 8 to 50 feet from nearby structures.
- Caissons installed with APE 100 vibratory hammer with a Model 260 Power Unit.
- Four caissons refused early installation was completed with APE 200 vibro-hammer with a Model 630 Power Unit.

Foundation Installation Details

- Hammer was initially operated at a low frequency while the caissons were plumbed.
- Once plumb, the hammer frequency was incrementally increased based on caisson penetration rate and measured PPV.

Vibration Monitoring Results

- Vibration data collected at 162 locations along the transmission line alignment.
- Vibration monitor locations established at distances of 8 to 200 feet from foundations.
- Measured PPV's ranged from 0.05 to 3.28 ips, with a majority less than 1.75 ips.
- 98% of vibration frequencies ranged from 10 to 40 Hz, with 74 % between 20 and 30 Hz.

Comparison of Frequency Dependent Criteria

(from Hajduk et al., 2009)

Vibration Data - Histogram

Vibration Data - Waveform

Heath Forbes – April 4, 2013

Vibration Results

Vibration Results

Settlement Results

Vibration Attenuation Plot

Vibration Attenuation Factor

- Factors used to estimate vibrations at sites of unknown attenuation characteristics.
- An attenuation factor of n = 0.81 was calculated from measured PPV.

 $PPV = kD^{-n}$

(Wiss, 1987)

where: k = value of PPV at 1 unit distance D = distance from source n = pseudo-attenuation coefficient

Reference	Site	Soil Type	n
Hajduk (2004)	1-8	Sand	0.496 – 1.03
	All	Sand	0.972
Ali et al (2003)	Sands		0.88 – 1.02
Brenner and Chittikuladiok (1999)	Surface Sands		1.5
	Sand fill, over soft clays		0.8 – 1.0
Wiss (1981)	Sands		1.0
Woods and Jedele (1985)	Dense compacted sands (15 <n<50)< td=""><td>1.1</td></n<50)<>		1.1
	Most sands (5 <n<15)< td=""><td>1.5</td></n<15)<>		1.5

(from Hajduk et al., 2004)

- Alleged damage to front porch slab.
- Structure located 60 feet from foundation.
- Measured PPV of 0.48 ips at 20 Hz.
- Investigation by others determined alleged damage was existing – claim dismissed.

- Alleged damage to structural foundation.
- Structure located more than 200 ft from foundation.
- Measured PPV of 0.24 ips at 24 Hz at monitor 113 ft from foundation.
- Alleged damage was existing – claim dismissed.

- Alleged damage to china, glassware, and artwork which fell off a bookshelf along an exterior wall adjacent to construction.
- Structure located 8 ft from foundation.
- Measured PPV of 3.06 ips at 28 Hz.

- Investigation performed by others immediately after foundation installation.
- Claim deemed legitimate.

Summary

- New transmission line was constructed through residential and commercial areas – very near existing structures.
- Subsurface conditions generally consisted of loose to medium dense sand with relatively shallow groundwater table.
- The utility owner was concerned the vibratory construction would result in numerous claims and complaints.
- Project completed with no major problems and only one legitimate claim.

Summary

- Majority of the vibration measurements fell below the USBM threshold.
- When they exceeded the threshold, the vibrations occurred over a short period without causing damage.
- No settlement issues were encountered.
- The monitoring program proved useful in providing data necessary for the owner to proceed with confidence in the most challenging areas, and also helped defend against meritless claims.

References

- BRITISH STANDARDS INSTITUTION, 1993. BS 7385: Part 2, "Evaluation of Vibration in Buildings, Part 2: Guide to Damage Levels from Ground-borne Vibration." London.
- DEPARTMENT OF THE NAVY NAVAL FACILITIES ENGINEERING COMMAND, 1986. NAVFAC DM-7.02 "Foundations and Earth Structures." Alexandria, VA.
- DOWDING, C. H., 1996. Construction Vibrations Prentice Hall, Upper Saddle River, NJ.
- GERMAN STANDARDS ORGANIZATION, 1999. DIN 4150, "Vibrations in Building Construction."
- HAJDUK, E. L., LEDFORD, D. L., and WRIGHT, W. B., 2004a. "Construction Vibration Monitoring in the Charleston, South Carolina Area." *Proceedings of the 5th International Conference on Case Histories in Geotechnical Engineering*, New York.
- HAJDUK, E. L., LEDFORD, D. L., and WRIGHT, W. B., 2004b. "Pile Driving Vibration Energy-Attenuation Relationships in the Charleston, South Carolina Area." *Proceedings of the 5th International Conference on Case Histories in Geotechnical Engineering*, New York.
- HAJDUK, E. L., CHERNAUSKAS, L. R., VAN DER HORST, S., AND PENN-SANDERS, E., 2009. "An Overview of Relevant Guidelines for Deep Foundation Generated Ground Vibrations." *Proceedings of the 2009 International Foundation Congress and Equipment Exposition,* Orlando.
- HILLER, D. M. and CRABB, G. I., 2000. "Groundborne Vibration Caused by Mechanized Construction Works." Transport Research Laboratory Report 429, United Kingdom.
- Jones & Stokes (2004). *Transportation- and construction-induced vibration guidance* June. (J&S 02-039.) Sacramento, CA. Prepared for California Department of Transportation, Noise, Vibration, and Hazardous Waste Management Office, Sacramento, CA.
- ORIARD, L. L., 1999. *The Effects of Vibrations and Environmental Forces*, International Society of Explosives Engineers, Cleveland, OH.
- SISKIND, D. E., STAGG, M. S., KOPP, J. W., and DOWDING, C. H., 1980. "Structure Response and Damage Produced by Ground Vibration from Surface Mine Blasting." *Report of Investigations 8507*, United States Bureau of Mines, Washington, D. C.
- WISS, J. F., 1967. "Damage Effects of Pile Driving Vibrations." *Highway Research Board Record 155*.