2013 Geo³T² Conference

Crosshole Sonic Logging: A 10 Year Perspective

Kyle Murrell, PE S&ME, Inc. Charleston, SC

Survey of State DOT Practice: Use of NDE for Drilled Shafts

Ref: Khamis Haramy, FHWA Denver 2008

CSL Equipment & Procedure

Slide courtesy of PDI

Pull **Probes** From **Bottom** To Top Fill Tubes with water

Procedure – cont.

Put probes in bottom of tubes.

Top view of pile with 4 access tubes

Stress Waves, emitted in one tube are received in another one if concrete quality is satisfactory

Slide courtesy of PDI

Data Processing

Limitations

- Cannot Evaluate
 Integrity Outside of the Reinforcing Cage
- Cannot be performed soon after concrete placement (typically test no sooner than 3 days)

SCDOT Experience - Background

- SCDOT On-call Foundation Testing Contract
- CSL Since 2000
- Responsible for ≈ ½ testing

On-Call Consultant Directive

- 1. Perform CSL on all SCDOT Shafts
- 2. Identify Anomalies

Anomaly Identification

• Good:

- Velocity decrease of 10% or less
- Constant energy

Questionable:

Velocity decrease of 10% to 20%

Poor/Defect:

- Velocity decrease >20%
- Drop in energy or loss of signal

On-Call Consultant Directive — cont.

- 1. Perform CSL on all SCDOT Shafts
- 2. Identify Anomalies
- 3. Review Drilled Shaft Inspection Reports
- 4. Provide Recommendation
 - "Good" Shaft Accept
 - "Poor/Defective" Shaft Additional Evaluation Required

Additional Evaluation

- Re-evaluate design requirements (wrt anomaly size, location, magnitude, etc.)
 - Individual Shaft Loading
 - End Bearing Requirement
 - Lateral Loading/Response
- Chipping/Sounding
- Coring

Example – Hellers Creek (2005)

- Dry Construction
- Concrete Placed by Tremie
- CSL Performed 9
 Days After
 Concrete
 Placement
- First of Four Shafts

Hellers Creek - Cont.

Hellers Creek – Cont.

- Classification "Poor/Defective"
- Recommendation Coring

TUBE PAIR	PRESENCE OF ANOMALIES?	ANOMALY DEPTH (ft)	MAXIMUM FIRST ARRIVAL TIME DELAY (%)	INCREMENT RATING
1-2	YES	54 – 57½	>100	P/D
2-3	YES	54 – 57½	>100	P/D
3-4	YES	55 - 57½	75	P/D
4-5	YES	56 – 57½	>100	P/D
1-5	YES	54½ - 57½	>100	P/D
1-4	YES	54½ - 57½	41	P/D
1-3	YES	54 – 57½	>100	P/D
2-4	YES	54½ - 57½	>100	P/D
2-5	YES	55 -571/2	>100	P/D
3-5	YES	55 – 57½	>100	P/D

Hellers Creek – cont.

- Cores from 54' to 60'
 (signal loss from 54' to 58'
 no CSL below 58')
- No Irregularities Found

SCDOT CSL Testing Statistics (2000 – 2011)

•	Number of Projects	66
---	--------------------	----

- Number of Shafts
- Number of Contractors

- Number of "Wet" Shafts
- Number of "Dry" Shafts
 192

- Projects in Soil
 24 (469 shafts)
- Projects in Rock
 42 (381 shafts)

Project Size Distribution

Number of Shafts Per Project

More than ½ have 8 shafts or less

Diameter Distribution

2/3 are < 6 ft

Distribution by Length

CSL Testing Statistics - Anomalies

Number of Projects

Number of Shafts

Shafts with Anomalies
 316 (37%)

Projects with Anomalies
 56 (85%)

Projects with No Anomalies
 10 (15%)

No. of Shafts on No-Anomaly Projects
 43 (5%)

Anomaly Locations

Comparison with Other Studies

Jones & Wu, Geotechnology, Inc. Missouri and Kansas

"Experiences with Cross-hole Sonic Logging and Concrete Coring for Verification of Drilled Shaft Integrity", ADSC GEO³ Construction Quality Assurance/Quality Control Technical Conference, Dallas Nov 2005

Contractor Performance

CSL Testing Statistics – Cont.

Number of "Good" Shafts
 730

Percentage of "Good" Shafts

Number of "Poor/Defective Shafts 120

Percentage of "Poor/Defective" Shafts

Projects with coring
 12+

- Core Findings
 - Bleed water features
 - Minor to significant segregation
 - Lumber (missing 4x4)
- Shafts Requiring Remediation

Case Histories & Examples

Top Anomalies

- 6-ft Diam Shaft in River
- Mudline is 12 to 18 ft below top of shaft
- Casing is 30 ft below top of shaft
- Anomalies in the top of every shaft

Edge Finder

Aggressive Manual Picks

Explanations?

- De-bonding (SCDOT access tubes are steel)
- Flowing water created large thermal gradients leading to micro-cracking during curing
- Bleed water causing flow paths through concrete
 - Supported by coring

Subsequent Information

Different Project – Same Problem

Consequences of Bleed Water Features

Wavespeed at 97.39 ft = 13,351 fps

Possible interpretations at 99.55 and 99.88 ft:

No signal or

- 1) Wavespeed of 8,564 (36% reduction)
- 2) Wavespeed of 4,647 (65% reduction)

Top Anomaly

Top Anomaly – continued

Case Histories & Examples

Bottom Anomalies

- From the inspector's logs
 - 4.5 ft diameter, 30 ft long shaft (approx 18 cy vol)
 - Permanent casing with rock socket below
 - No drilling fluid
 - Concrete placed via pump line
 - No problems noted

20' to 25': Gravel or No Recovery

Middle Anomaly

Time (ms)

Middle Anomaly – cont.

Middle Anomaly – cont.

Summary - Major Delay/No Signal

BAD

Summary – SCDOT Experience

- Concrete quality, not necking or soil intrusion, is the cause of anomalies
 - Bleed water, segregation, contamination?
- Vast majority of anomalies ≠ defect
- ≈90% of anomalies are found near the top or the bottom
- An anomaly free project is very rare
- Research should address concrete issues

