

Structural Resin Injection:

For Structural and Soil Stabilization Solutions

Presented By: Michael Stephens, P.E. Bryan Honeycutt

URETEK ICR, Mid-Atlantic Telephone (803) 318-2225

www.uretekma.com

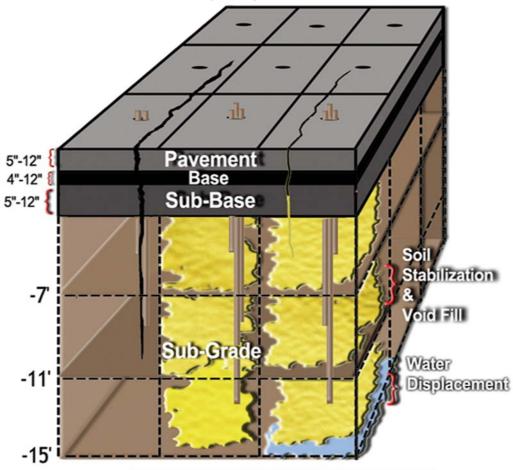
URETEK HDPF History

- 1975 URETEK Finland develops high-density polymers
- 1988 URETEK USA, Inc. granted exclusive rights to United States and Mexico
- 2003 Deep Injection Process patented
- 2004 URETEK MA established in NC

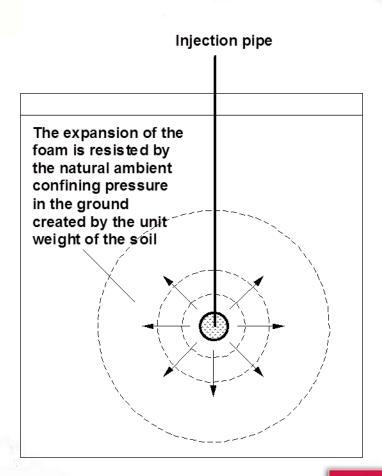
Introduction to **Expanding Polyurethane**

- Three Broad Categories
 - Hydrophilic, Hydrophobic and **Hydroinsensitive (URETEK 486 Star)**
- Two Component Polymerization Process
 - ➤ Injected as a liquid, chemical reaction expands and changes the liquid into a solid

Advantages to Using URETEK Polymers

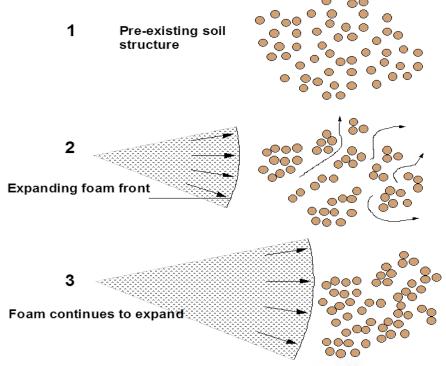

- Minimal Disruption
 - ➤ No Digging / 5/8" diameter holes
 - Develops 90% strength in 15 minutes
 - > Fully cured in 24 hours
 - Return to service in 1 hour
- Excellent Chemical Resistance
- Long Term Structural and Dimensional **Stability**
- Environmentally Benign

Typical URETEK Deep InjectionTM



The HDPF Deep InjectionTM process utilizes two separate mechanisms to achieve its objective.

Firstly, it uses confining pressure within the ground to resist the expansion of the foam node.


By resisting the foam, the soil comes under pressure, which drives out the water and compacts it.

Technology. Chemistry. Experience.

The Localized Pressure process for cohesionless soils expels water and makes the soil more compact

The soil volume stays the same since the pressure pulse causes the soil to aggregate, thus increasing its permeability temporarily, thus allowing water to flow away rapidly

As the water flows away, the continued pressure from the expanding foam causes the soil aggregates to move together, producing a more compact, stronger soil

Technology. Chemistry. Experience.

NAVFAC Product Testing

Technology. Chemistry. Experience.

CUSTOM STRUCTURAL POLYMER TECHNOLOGY

NAVFAC Product Testing

Intact Extraction of the Stabilized Crater Repair

Product Testing

Stabilization of Aggregate Subbase below the Basaltic Base of an Asphalt Pavement

Product Testing

Excavation Revealing ISSBIP-Stabilized Sand

Trench Stabilization Calhoun St. Columbia

Technology. Chemistry. Experience.

Product Testing
Rigid Airfield
Pavements

Study of the impact on the performance of the repaired sections characterized by load transfer efficiency, joint stiffness and deformation energy dissipated through the pavement foundation

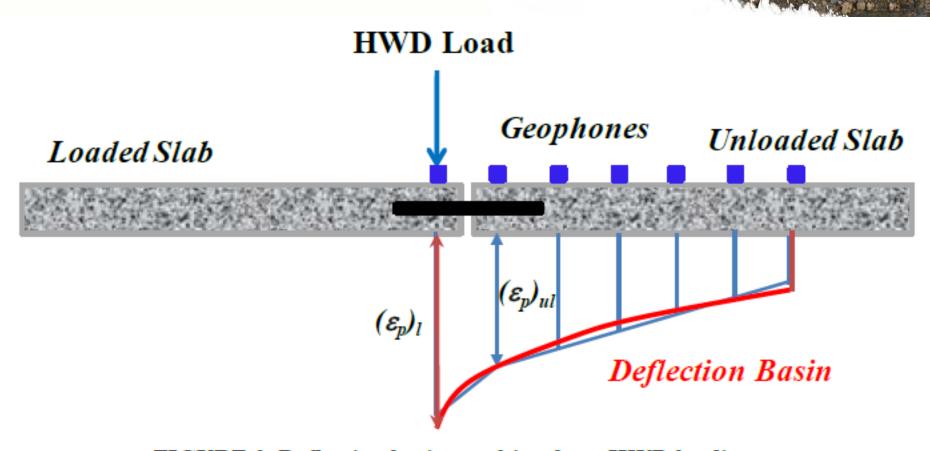
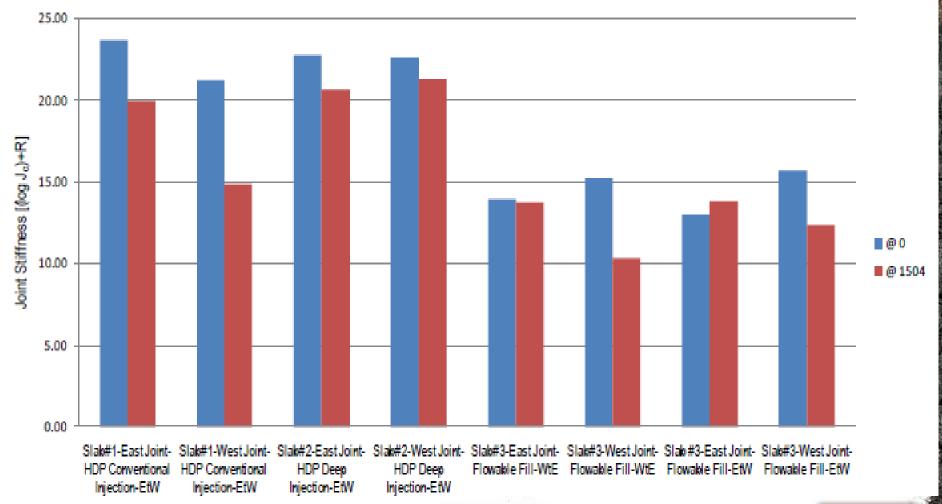


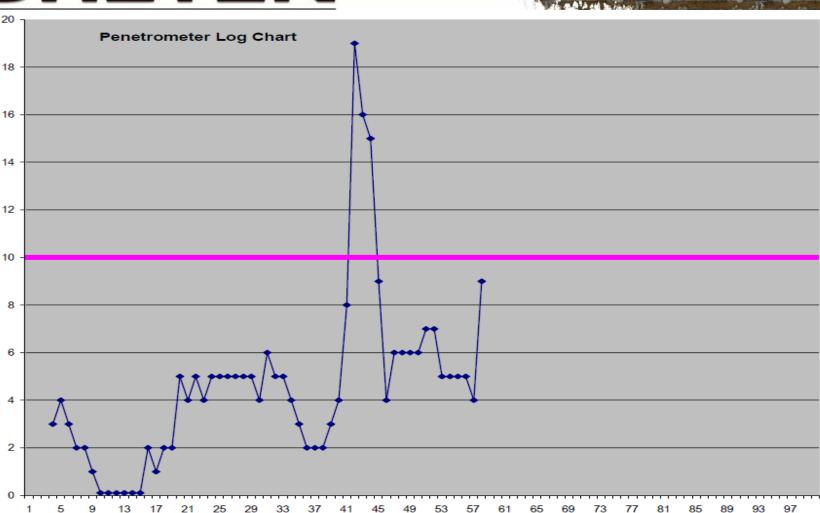

FIGURE 2 Deflection basin resulting from HWD loading system

Technology. Chemistry. Experience.



Accelerated loading and HWD testing of the repaired sections.

Technology. Chemistry. Experience.



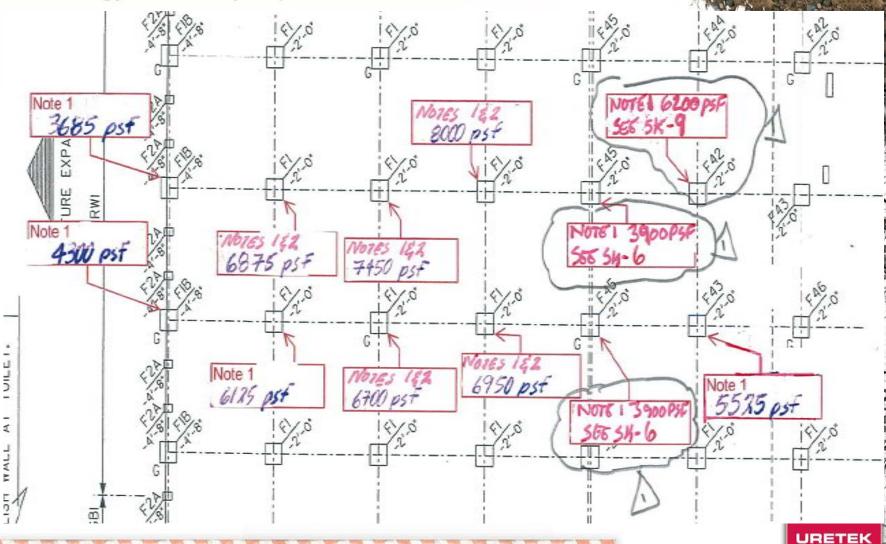
Technology. Chemistry. Experience.

SCDOT SC-277S MM-3.1

CUSTOM STRUCTURAL POLYMER TECHNOLOGY

Depth in cm (x10)

Technology. Chemistry. Experience.


CUSTOM STRUCTURAL POLYMER TECHNOLOGY

Technology. Chemistry. Experience.

CUSTOM STRUCTURAL POLYMER TECHNOLOGY

Technology. Chemistry. Experience.

CUSTOM STRUCTURAL POLYMER TECHNOLOGY

ICR

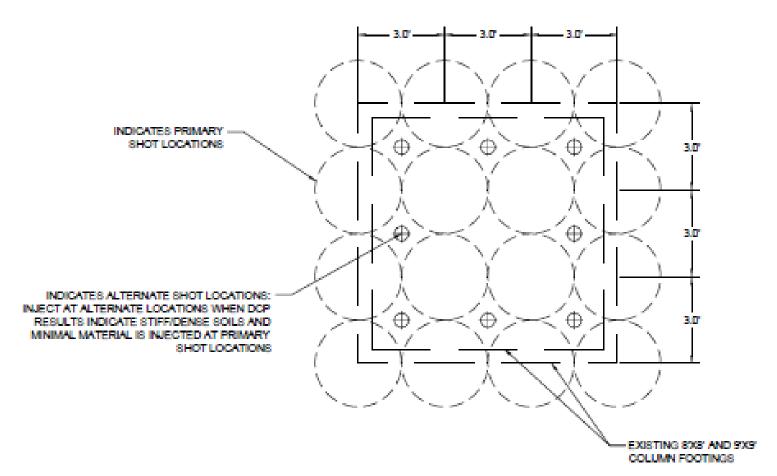
\$S&ME

Technology. Chemistry. Experience.

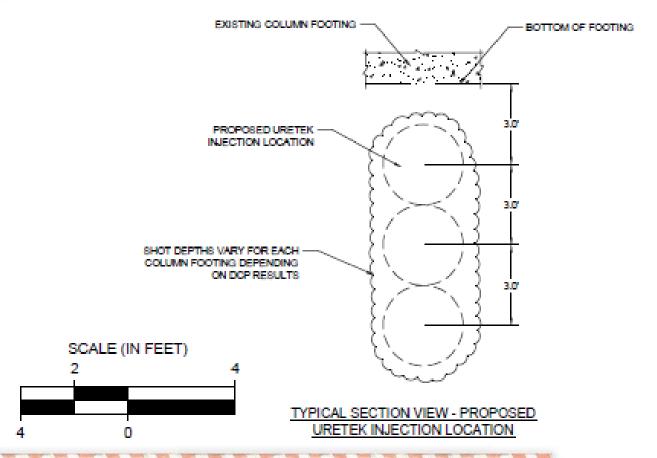
		ingy. Chemistry. Experience.		-								
DEPTH (feet)	GRAPHIC	MATERIAL DESCRIPTION	TID III O	ZQ-CYLLING Jack	SAMPLE NO.	SAMPLE TYPE	1st 6in / RUN # / S	2nd 6in / REC 330	3rd 6in / RQD Y	SPT N-Value (bpt) ■ FINES % ▲ PL NM LL 10 20 30 40 50 60 70 80 90	N VALUE	
		TOPSOIL - 4 inches	1			-						
		FILL: SANDY SILT (ML) - hard, reddish brown, fine to medium, moist			1	X	19	22	18		40	
5-		RESIDUUM: SANDY SILT (ML) - very stiff, reddish brown tan, fine to medium		906.0-	2	X	7	11	14		25	
		SILTY SAND (SM) - very dense, yellowish brown white, fine to coarse		300.0	3	X	12	23	28		51	
10-		SILTY SAND (SM) - dense to medium dense, brown gray white, slightly micaceous, fine to coarse		901.0-	4	X	10	16	16	<i>f</i>	32	
AT BODY SHOP EXPANSION GPJ 58ME 2009 09 24 GDT 10/20/11				896.0-	5	X	7	9	13		22	
OS SHOP EXPANSIO		SILTY SAND (SM) - dense, gray white brown, fine to coarse, wet	⊽	891.0-	6	X	2	25	19		44	
MAY BOD		Boring terminated at 20 feet										

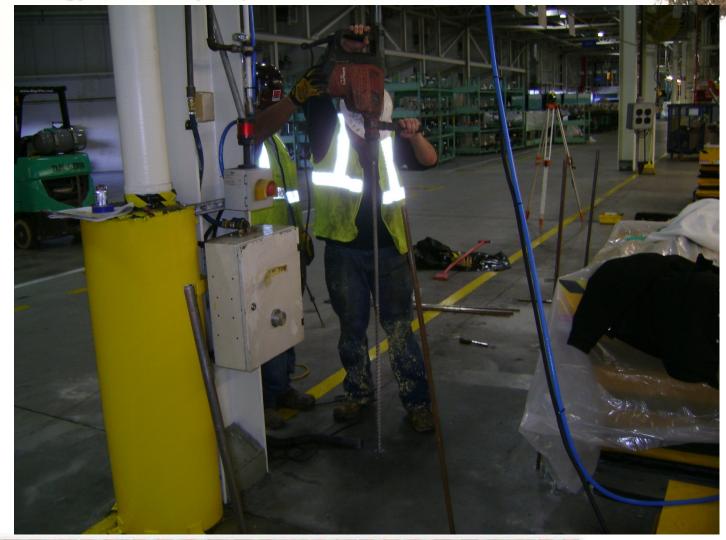
CUSTOM STRUCTURAL POLYMER TECHNOLOGY

Technology. Chemistry. Experience.


CUSTOM STRUCTURAL POLYMER TECHNOLOGY

Column	Footing Width (ft)	Bottom of Footing (ft)	Required Bearing Pressure (psf)	Notes
A-21	8	3.5	7100	Inject Grout From BOF to at least 8 feet below slab
OA-19	8	3.5	5654	Inject Grout from BOF to at least 8.5 feet below slab
D-12	8	3.5	3569	Meets Required Bearing Pressure
E-10	8	3.5	4024	Not Enough Information
OB-27	9	3.8	3950	Inject Grout from BOF to at least 5.3 feet below slab
OB-30	9.5	3.8	3800	Inject Grout from BOF to at least 10 feet below slab
OB-31	9	3.8	3850	Inject Grout from BOF to at least 7 feet below slab


Technology. Chemistry. Experience.



PLAN VIEW - PROPOSED URETEK INJECTION LAYOUT

Technology. Chemistry. Experience.

CUSTOM STRUCTURAL POLYMER TECHNOLOGY

Technology. Chemistry. Experience.

CUSTOM STRUCTURAL POLYMER TECHNOLOGY

Technology. Chemistry. Experience.

Technology. Chemistry. Experience.

Depth	Depth	Pre DPM30	Pre SPT	Depth	Depth	Post DPM30	Post SPT		
(cm)	(ft)	Blows/10 cm	Blows/FT	(cm)	(ft)	Blows/10 cm	Blows/FT		
10	0.3			10	0.3				
20	0.7			20	0.7				
30	1			30	1				
40	1.3	27	21	40	1.3				
50	1.6	44	34	50	1.6				
60	2	40	31	60	2	28	21		
70	2.3	33	25	70	2.3	22	17		
80	2.6	54	41	80	2.6	56	43		
90	3	36	28	90	3	22	17		
100	3.3	19	15	100	3.3	27	21		
110	3.6	19	15	110	3.6	160	123		
120	3.9	50	38	120	3.9	173	133		
130	4.3	36	28	130	4.3	86	66		
140	4.6	30	23	140	4.6	140	107		
150	4.9	50	38	150	4.9	150	115		
160	5.2	67	51	160	5.2	179	137		
170	5.6	83	64	170	5.6	169	129		
180	5.9	97	74	180	5.9	190	146		
190	6.2	11	8	190	6.2	210	161		
200	6.6	139	106	200	6.6	225	172		
210	6.9			210	6.9				

CUSTOM STRUCTURAL POLYMER TECHNOLOGY

Technology. Chemistry. Experience.

Depth	Depth	Pre DPM30	Pre SPT	Depth	Depth	Post DPM30	Post SPT
(cm)	(ft)	Blows/10 cm	Blows/FT	(cm)	(ft)	Blows/10 cm	Blows/FT
10	0.3			10	0.3		
20	0.7			20	0.7		
30	1			30	1		
40	1.3			40	1.3		
50	1.6	10	8	50	1.6	29	22
60	2	21	16	60	2	30	23
70	2.3	42	32	70	2.3	24	18
80	2.6	54	41	80	2.6	31	24
90	3	31	24	90	3	53	41
100	3.3	25	19	100	3.3	35	27
110	3.6	30	23	110	3.6	38	29
120	3.9	43	33	120	3.9	47	36
130	4.3	27	21	130	4.3	48	37
140	4.6	32	25	140	4.6	39	30
150	4.9	18	14	150	4.9	47	36
160	5.2	21	16	160	5.2	55	42
170	5.6	31	24	170	5.6	54	41
180	5.9	24	18	180	5.9	49	38
190	6.2	27	21	190	6.2	57	44
200	6.6	20	15	200	6.6	69	53
210	6.9	24	18	210	6.9	66	51
220	7.2	20	15	220	7.2	73	56
230	7.5	30	23	230	7.5	89	68
240	7.9	101	77	240	7.9	100	77
250	8.2	120	92	250	8.2		
260	8.5	145	111	260	8.5		

Structural Resin Injection:

For Structural and Soil Stabilization Solutions

Presented By: Michael Stephens, P.E. Bryan Honeycutt

URETEK ICR, Mid-Atlantic Telephone (803) 318-2225

www.uretekma.com

