A Case Study of Various Eagle Ford Shale Stabilizations for Pavement Subgrade

Geo3T2 Conference
NCDOT
April 4th, 2013
Raleigh, North Carolina

Presented By
Hosam Salman, P.E., Parsons Brinckerhoff
Acknowledgements

- **Co-authors**
 - Albert Dawkins, P.E., Parsons Brinckerhoff
 - Hugh T. Kelly, PG, P.E., Parsons Brinckerhoff
 - Richard S. Williammee, Jr., M.S., P.E., Texas Department of Transportation (TxDOT)
A Case Study of Various EFS Stabilizations for Pavement Subgrade

- Introduction
- Eagle Ford Shale (EFS) Formation
- Goals of Treatment
- The Case Study Stabilization Program
- Field & Laboratory Bulk Sample Programs
- Project Requirements
- Discussion
- Sulfate Impact on the EFS Stabilization
- Case Studies
Introduction

- The stability of pavements subgrade vs long term performance.
- Most of Texas pavement on CL/CH/EFS
- Dry & wet cycles.
- DFW’s highest numbers of congested highways.
- DFW’s most expansive soils in the country
Top 100 Congested Segments of Roadways in DFW Metropolitan
Eagle Ford Shale Formation

- EF Formation ~ EF Shale
- EFS is a sedimentary rock formation of Cretaceous age (66 to 155 million years ago).
- EFS derives its name from the old community of Eagle Ford, where outcrops of the Eagle Ford Shale were first observed.
Eagle Ford Location
Eagle Ford Shale Formation
(Near Test Site-Plan View)
Eagle Ford Shale Formation
(Near Test Site-Elevation View)
Eagle Ford Shale Formation
Goals of Treatment

- Reduce shrink/swell.
- Increase strength to provide long-term support.
- Reduce pavement thickness.
- Reduce moisture susceptibility and migration.
- Utilize local materials/LEED requirements.
- Resistance to frost.
- Provide a working Platform.
The Case Study

- Lime Stabilization
- Hydraulic Cement-Fly Ash
- Lime-Hydraulic Cement
- Chemical Products
 - Mix of clay-based and calcareous/limestone materials
 - Organic chemical (biocatalyst formulation)
Stabilization Program

- Hydraulic Cement (3%) - Fly Ash (3%)
- Lime (3%) - Hydraulic Cement (3%)
- Lime Stabilization (6%)
- Lime Stabilization (8%)
- Chemical Product No.1 (200 ml)
- Chemical Product No.1 (300 ml)
- Chemical Product No.1 (400 ml)
- Chemical Product No.1 (200 ml) - Lime (3%)
- Chemical Product No.1 (150 ml) - Lime (4%)
- Chemical Product No.2
Field Bulk Sample Program

- Two phases; preliminary and detailed
 - The preliminary program included sampling one bulk sample
 - The detailed and specific treatment program included sampling four bulk samples along the EFS Formation.
Field and Laboratory Bulk Sample Program
<table>
<thead>
<tr>
<th>Alternative</th>
<th>LL</th>
<th>PI</th>
<th>Y pcf</th>
<th>MC</th>
<th>UC psi</th>
<th>Swell @0 day %</th>
<th>Swell @2 days %</th>
<th>Swell @4 days %</th>
<th>Swell @7 days %</th>
<th>Swell @17 days %</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFS Raw Soils</td>
<td>87</td>
<td>57</td>
<td>95.7</td>
<td>25.2</td>
<td>18.8</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>7.05</td>
</tr>
<tr>
<td>3% Cement & 3% Fly Ash</td>
<td>82</td>
<td>51</td>
<td>96</td>
<td>23.8</td>
<td>99.8</td>
<td>5.84</td>
<td>0.52</td>
<td>8.19</td>
<td>4.91</td>
<td>N/A</td>
</tr>
<tr>
<td>3% Lime & 3% Cement</td>
<td>60</td>
<td>16</td>
<td>89.7</td>
<td>28.2</td>
<td>186.8</td>
<td>1.73</td>
<td>0.71</td>
<td>0.62</td>
<td>1.75</td>
<td>1.75</td>
</tr>
<tr>
<td>6% Lime</td>
<td>59</td>
<td>16</td>
<td>89.5</td>
<td>29.6</td>
<td>170.0</td>
<td>1.36</td>
<td>1.08</td>
<td>0.97</td>
<td>N/A</td>
<td>0.27</td>
</tr>
<tr>
<td>8% Lime</td>
<td>58</td>
<td>14</td>
<td>89.2</td>
<td>30.6</td>
<td>176.0</td>
<td>0.98</td>
<td>1.00</td>
<td>0.86</td>
<td>N/A</td>
<td>0.44</td>
</tr>
<tr>
<td>Chemical Product No.1-200ml</td>
<td>83</td>
<td>55</td>
<td>98.3</td>
<td>24.2</td>
<td>7.8</td>
<td>13.76</td>
<td>14.76</td>
<td>16.47</td>
<td>N/A</td>
<td>7.96</td>
</tr>
<tr>
<td>Chemical Product No.1-300ml</td>
<td>85</td>
<td>57</td>
<td>97.8</td>
<td>23.8</td>
<td>6.4</td>
<td>12.85</td>
<td>13.66</td>
<td>14.58</td>
<td>N/A</td>
<td>7.67</td>
</tr>
<tr>
<td>Chemical Product No.1-400ml</td>
<td>84</td>
<td>56</td>
<td>97.3</td>
<td>23.8</td>
<td>8.1</td>
<td>12.91</td>
<td>14.73</td>
<td>15.56</td>
<td>N/A</td>
<td>6.87</td>
</tr>
<tr>
<td>3% Lime & Chemical Product No.1-200ml</td>
<td>68</td>
<td>33</td>
<td>91.6</td>
<td>28.7</td>
<td>94.3</td>
<td>1.45</td>
<td>1.21</td>
<td>1.11</td>
<td>N/A</td>
<td>0.25</td>
</tr>
<tr>
<td>4% Lime & Chemical Product No.1-150ml</td>
<td>63</td>
<td>24</td>
<td>90.4</td>
<td>29.7</td>
<td>102.7</td>
<td>1.07</td>
<td>0.91</td>
<td>1.02</td>
<td>N/A</td>
<td>0.47</td>
</tr>
<tr>
<td>Chemical Product No.2</td>
<td>85</td>
<td>57</td>
<td>98.1</td>
<td>22.5</td>
<td>6.3</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>8.10</td>
<td>7.86</td>
</tr>
</tbody>
</table>
Laboratory Bulk Sample Program

<table>
<thead>
<tr>
<th>Alternative</th>
<th>LL</th>
<th>PI</th>
<th>V^* pcf</th>
<th>MC*</th>
<th>UC* psi</th>
<th>-200 Sieve</th>
<th>Sulfates ppm</th>
<th>Swell @0 days %</th>
<th>Swell @7 days %</th>
<th>Swell @17 days %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample 2A</td>
<td>72</td>
<td>56</td>
<td>86.4</td>
<td>32.5</td>
<td>153.9</td>
<td>95</td>
<td>147</td>
<td>0.52</td>
<td>0.34</td>
<td>0.10</td>
</tr>
<tr>
<td>Sample 2B</td>
<td>59</td>
<td>44</td>
<td>95.8</td>
<td>24.3</td>
<td>159.9</td>
<td>86</td>
<td>120</td>
<td>0.22</td>
<td>0.20</td>
<td>0.24</td>
</tr>
<tr>
<td>Sample 3</td>
<td>63</td>
<td>49</td>
<td>86.1</td>
<td>30.4</td>
<td>204.8</td>
<td>85</td>
<td>133</td>
<td>0.38</td>
<td>0.26</td>
<td>0.20</td>
</tr>
<tr>
<td>Sample 4</td>
<td>81</td>
<td>43</td>
<td>92.5</td>
<td>25.8</td>
<td>64.1</td>
<td>94</td>
<td>1753</td>
<td>1.78</td>
<td>0.42</td>
<td>1.13</td>
</tr>
</tbody>
</table>
Project Requirements

- Limit the swell potential to a maximum of 2%
- Achieve a minimum of 100 psi for the unconfined compressive strength
- Other typical reasons for stabilization include:
 - Increased strength to provide long-term support.
 - Reduction in pavement thickness.
 - Reduction in moisture susceptibility/migration.
 - Working platform.
Discussion

- Lime either alone or as a combined agent meets the project requirements.
- Fly ash/chemical products did not achieve the project requirements; swell potential (2 %) or compressive strength (100 psi).
- Lime or lime/cement reduced
 - The Plasticity Indices from 57 to less than 16
 - The maximum dry density from 95.7 pcf to less than 89.7 pcf
Sulfate Impact on EFS

Are there possible sulfate concentrations within the alignment and potential risk for sulfate heave?

NO

No further investigation is needed.

YES

SOIL EXPLORATION
Quantify the level and distribution of sulfate concentrations.

Sulfate Concentration < 3000 ppm

YES

Traditional treatment

NO

Sulfate Concentration ≥ 3000 ppm but ≤ 8000 ppm

YES

Modified treatment

NO

Sulfate concentration > 8000 ppm

YES

Alternative treatment

Quality Assurance Testing During Construction
Sulfate Concentration vs EFS
Sulfate Impact on EFS

Oxidation Zone = Sulfate + Calcite + Water = Gypsum

Bedrock (Shale)
Pavement Heave Due to Sulfate
Case Studies of Expansive Soils around the World

- Oman
- Canada
- Malaysia
- Algeria
CONCLUSION

- Understanding the stabilized agent, the project requirements, soil properties, geology formation, previous history and local practice.
- Lime either alone or as a combined agent was highly effective at the project location.
- Fly ash and chemical products did not achieve the project requirements.
- Lime or lime/cement reduced the Plasticity Indices and maximum dry density.
CONCLUSION

- Curing time and percentage are major factors.
- Stabilization utilizing lime may be applied on a single or double application process.
- Sulfate concentration of the EFS Formation.
- Lime is the most common chemical agents.
- The treatment of expansive soils of some countries is very similar to what we obtained from the EFS due to the similarity of dominating Montmorillonite in the expansive clay soils.
QUESTIONS?