Application of a Wick Drain System for an NCDOT Bridge Project

By: Ryan P. Doyle, P.E.

Zahra Aghazadeh, PhD, P.E.

Gabriel W. Lang, P.E.

April 9, 2019

Project Background

- Located Nash County (near Rocky Mount) on the border of the Coastal Plain and Piedmont Physiographic Provinces
- Project consists of reconfiguring interchange, which includes a new bridge over I-95 with maximum embankment fill height around 34-ft

Site Investigation and Plan View

- 39 total SPT borings for new roadway and bridge structure (2 span)
- 5 SPT bridge borings:
 - 4 terminated at top of rock, and
 - 1 terminated 19.6-ft into rock (granite)
- In general, overburden consisted predominantly of Undivided Coastal Plain and Coastal Plain soils
- Yorktown Formation clay with varying amounts of fine-grained sand; shell material commonly concentrated in lenses

Site Photos

Subsurface Profile

- Soft to medium stiff clay starting 20 to 25-ft below existing ground surface
- Variability in soil profile throughout project in Coastal Plain soils (typical for Coastal Plain)
 - Some areas didn't encounter any clay between existing ground and top of rock

AECON

End Bent 2 Cross-Section

- Height of embankment = 20-ft
- OC Clay Thickness = 15-ft

– GWT Elev. = 129-ft

- Depth to TOR = 52-ft

– NC Clay Thickness = 6-ft

Considerations / Challenges

- Geotechnical:
 - Long-term settlement for Roadway and Bridge
 - Differential settlement
 - Amount of time to reach appropriate consolidation
 - Presence of sand lenses
 - Downdrag on pile foundations
- Project:
 - Schedule (need to consider wait time)
 - Cost
 - Constructability

Laboratory Results

Sample	Location	Depth (ft)	Atterberg Limits	MC %	Fines %
ST-1	End Bent 2	20.0-22.0	LL= 58; PI= 39	65.8	80.94
ST-2	Ramp D	13.1-15.1	LL= 59; PI= 41	36.1	99.22
ST-3	Ramp A	20.0-22.0	LL= 59; PI= 37	67.1	94.83
SS-217	End Bent 2	23.5-25.0	LL= 66; PI= 45	49.1	84.56
SS-219	End Bent 2	33.5-35.0	LL= 70; PI= 50	68.4	85.17

Clay Characteristics

- Highly plastic
- Highly compressible
- Slow draining

REF: Figure 8-17 Drainage Time Required (Duncan and Wright, 2005) https://www.dot.ny.gov/divisions/engineering/ technical-services/geotechnical-engineering-bureau/geotech-eng-repository/GDM_Ch-8_Geomechanics.pdf>

AECON

Parameter	Value
C _c	0.761
C _r	0.091
C _v	13.1 ft²/yr

Clay Characteristics (cont.)

AECON

Calculations Details: Settlement Theories

Consolidation Theory	for Fine Grain Material	Elastic Settlement for Coarse Grain Material	
Primary Consolidation of Soft Material	Secondary Consolidation of Stiff Material	Schmertmann (1978)	
$S_c = \frac{H_0 C_c}{1 + e_0} \log \frac{\sigma_{\nu 0}' + \Delta \sigma_{\nu}'}{\sigma_{\nu 0}'}$	$S_c = \frac{H_0 C_r}{1 + e_0} \log \frac{\sigma_{\nu 0}' + \Delta \sigma_{\nu}'}{\sigma_{\nu 0}'}$	$S_c = c_1 c_2 q_n \sum \frac{I_z \Delta z}{E_s}$	
S _c = Settlement of Layer		C ₁ =correction factor for embedment of	
H_0 = Thickness of Layer	foundation		
C_c = Compression Index of Layer		C_2 =correction factor to account for creep in soil	
C _r = Recompression Index of Layer		\boldsymbol{q}_n =The intensity of the uniformly distributed load	
E ₀ =Initial Void Ratio at Layer		at the base of the foundation	
σ'_{VO} =Effective Overburden Pressure	e at Layer Center	I _z =strain influence factor	
$\delta \sigma'_{v}$ = Surcharge Pressure At Layer (Center (Resulting From Dewatering)	t=time in years	
		E _s =Young's modulus of the elastic medium	

Expected Settlement and Consolidation Time Rate at Y1-4403 20-ft

Clay Layer	Consolidation Coefficients	Settlement (in)
Over Consolidated from 17 to 32-ft	C _r =0.091	2.16
Normally Consolidated from 32 to 38-ft	C _c =0.761	5.16

Applied	C _v	C _v	H _{dr}	Time
Equation	(cm²/s)	(ft²/yr)	(ft)	(months)
$T_{v} = \frac{C_{v}t}{H_{dr}^{2}}$	0.00039	13.1	5	20

Applicable Ground Improvements by Consolidation:

- Ground Improvement (replacement of the soil or adding sand columns)
- > Surcharging
- Preloading
- > Wick drain

At this project: Sufficient strength, extremely slow drainage rate and high water content

Problem and Solution

Reference: https://slideplayer.com/slide/4713675/

Dr. j.N.Jha, Professor and Head (Civil Engineering), Guru Nanak Dev Engineering College, Ludhiana, Punjab-141006

Reference: www.geomatindonesia.com

How Does Vertical Drains Work?

Reference: https://slideplayer.com/slide/10347523/

Wick Drain Installation

Reference: Geoengineer.org

Wick Drain Installation

Reference: Hayward Baker

Reference: Menard Group USA

Reference: stuff.co.nz

Design with Wick Drains

Reference: NYSDOT Geotechnical Design Manual, Chapter 14

Applied Formula	Parameters		
	t= time required to achieve desired average degree of consolidation		
$\langle D^2 \rangle$ (1)	$\rm U_h{=}$ average degree of consolidation to be achieved by PVD system		
$t = \left(\frac{D}{8c_h}\right)(F(n) + F_s)\ln\left(\frac{1}{1 - U_h}\right)$	D= diameter of cylinder of influence of the drain (drain influence zone		
$(\mathcal{O}\mathcal{O}_n)$ $(\mathcal{I}\mathcal{O}\mathcal{O}_n)$	C _h = consolidation coefficient for horizontal drainage		
$F(n) = \ln\left(\frac{D}{d}\right) - 0.75$	F(n)= drain spacing factor		
-(1)	D= equivalent circular drain diameter		
$T = \frac{F(n)\ln\left(\frac{1}{1-U_h}\right)}{1-U_h}$	F _s = factor for soil disturbance		
$r_R = 8$	T _R = time factor for radial flow		

Wick Drains Installation Patterns

Reference: NYSDOT Geotechnical Design Manual, Chapter 14

Waiting Period by Installing of Wick Drains

Parameters	S (ft)	D=1.05 S (ft)	F(n)	Fs	t (days)	t (months)
Assuming the Soil	4	4.2	2.48	2	272	9
is Sensitive Fs=2	5	5.25	2.70	2	446	15
	6	6.3	2.88	2	667	22
Assuming the Soil	4	4.2	2.48	0	150	5
is not Sensitive	5	5.25	2.70	0	256	9
Fs=0	6	6.3	2.88	0	394	13

Reference: NYSDOT Geotechnical Design Manual, Chapter 14

Downdrag and Consolidation after Waiting Period

$$U_{Total} = (1 - U_r)(1 - U_v)$$

95% radial consolidation, results in 98% total consolidation.

Assumptions:				
d (inch) 2				
C _h (cm2/s)	0.00117			
U _h (%)	95%			

Final Design Plan View:

ESTIMATED QUANTITIES	
WICK DRAINS	113,000 FT.
SELECT MATERIAL,CLASS III	2,200 CY.
GEOTEXTILE FOR SOIL SEPARATION	3,300 SY.

Final Design Profile and Cross Section View:

Length of embankment where wick drains will be installed = 300-ft Depth of wick drains= 30 to 40-ft Widest width of embankment along toe is at Bent 1 (4:1 slopes) = 280-ft Number of wick drains at the bridge = 3,212

Final Design Profile and Cross Section View:

pore water pressures

- Settlement Monitoring

AECON

Special Thanks

- NCDOT GEU

- Jinyoung Park
- Jamey Batts
- Tyler Bottoms
- Dean Argenbright
- $-GEO^{3}T^{2}$
- -AECOM

ΑΞϹΟΜ

Thank You Any Questions?

