

Geo³T² April 4-5, 2013

Geophysical Studies to Support Roadway Investigations

Ned Billington, PG and Paul Weaver, PG

Topics

 NCDOT Standard Approach to Roadway Investigations

- Geophysical Methods
 - Seismic Refraction
 - Surface Wave Seismic
 - Terrain Conductivity
- Example Project

NCDOT Investigation for Roadways

Purpose: Characterize subsurface conditions, such as soil type and thickness, depth to water, and depth to rock.

- Borings every 200 feet along centerline
- Drill 10 feet below proposed grade in cut areas
- Drill 1.5 time height of embankment in fill areas (min. 10 feet)
- Drill to SPT/auger refusal
- Typically no rock coring
- Drill offset borings if rock encountered above proposed grade

Geophysical Methods

- Seismic Refraction
 - Compressional Wave Velocity Models
- Surface Wave Seismic
 - Shear Wave Velocity Models
- Terrain Conductivity
 - Average electrical conductivity of subsurface volume

Seismic Refraction

 Obtain first arrivals of energy that travel along the interfaces between successively faster "layers"

Seismic Refraction

 Seismic data obtained with fixed geophones and an active source (sledgehammer, Seisgun, AWD, etc.)

Distance

Refraction Data Analysis

Pick First Arrivals

Assign Geometry and Model Velocity

Seismic Refraction

- Provides compressional wave velocity model
- Can indicate approximate depth to rock
- Can incorporate topography
- Can access locations where drill rigs cannot
- Challenges:
 - Thin "layers"
 - Velocity reversals
 - Out-of plane refractions
 - Saturated soils

Surface Wave Seismic

- MASW, ReMi, SASW methods
- Dispersion Change in velocity with frequency/wavelength

MASW Data Acquisition

- Fixed geophone array (like seismic refraction)
- Or with a towed land streamer

1D MASW

Recognize Surface Wave Energy

Convert to frequency-velocity domain

Produce 1D Inversion Model

2D MASW

 For multiple array locations, generate and combine 1D models into 2D cross-section

Surface Wave Seismic

- Provides shear wave velocity model
- Can indicate approximate depth to rock
- Can show velocity reversals
- Can be collected at same time as refraction data
- Challenges:
 - Very shallow bedrock
 - Topography

Electromagnetic Induction

- EM instruments provide:
 - -Terrain Conductivity (Quadrature) and
 - Metal Detection (In-Phase)
- Depth of response depends on coil spacing, frequency, dipole orientation, and other factors
- More conductive soil = higher conductivity
 More resistive = lower conductivity response

EM Terrain Conductivity Tools

- Fixed Coil Spacing,
 Single Frequency
 - Geonics EM31

- Fixed Coil Spacing,
 Multi-Frequency
 - Geophex GEM-2
 - GSSI Profiler

Collecting EM Data

- One person walking along "parallel" lines
- GPS positioning or fixed stationing
- Data recorded at fixed time interval (1 sec, e.g.)
- Line spacing determines lateral resolution

Processing EM Data

Example Project

- Bridge No. 97 on SR 1925 (Worsham Mill Road) over Wolf Island Creek in Rockingham County, B-4803
 - 2-Lane Road, severe curve and narrow bridge
 - Historic mill on one corner of bridge
 - Centerline of proposed roadway on steep slope

Geotechnical Investigation

- Approx. 150-foot boring spacing
- Could only drill at top of slope along most of alignment
- Drilled several offset borings due to encountering auger/SPT refusal ("rock") above proposed grade
- Bridge rod drives at toe of slope to get rock depth

Geotechnical Investigation

Cross-Section 17+50

Cross-Section 19+00

Cross-Section 20+50

Cross-Section 20+00

Cross-Section 21+00

Geophysical Demonstration

- Seismic Refraction
- Surface Wave Seismic
- EM Terrain Conductivity

Seismic Refraction

Line 1

- Two Lines
 - Line 1: Section 20+50
 - Line 2: CL 17+70 to 18+85
- 24-channel Geode seismograph
- 8 Hz vertical Geophones
- 5-foot geophone spacing, 115-foot array
- 20-lb sledgehammer source

Line 1

Refraction Line 2 CL 17+70 to 18+85

Terrain Conductivity Test

- Geonics EM31, Vertical dipole mode
 - 9.8 kHz, 12-ft coil spacing, ~20-ft depth
- Line spacing roughly 15 to 20 feet

Terrain Conductivity

Summary

- Boring data combined with seismic velocity models can provide a more comprehensive evaluation than either method alone
- 1D MASW shear wave velocity models can be generated from seismic refraction data to aid in evaluation
- 2D shear wave velocity models can be used to characterize subsurface stiffness and depth to rock
- Terrain conductivity could be performed as an initial study get possible locations of shallow rock

Recommendations

- Consider performing a geophysical study prior to selecting initial boring locations at sites where shallow rock is likely
- Consider using geophysics where access by conventional drilling equipment is limited
- Consider using geophysics to help resolve depth to rock issues identified by geotechnical investigations

