MECHANICALLY STABILIZED EARTH RETAINING WALLS (1-16-18)

1.0 GENERAL

Construct mechanically stabilized earth (MSE) retaining walls consisting of steel or geosynthetic reinforcement in the reinforced zone connected to vertical facing elements. Use precast concrete panels for vertical facing elements and coarse aggregate in the reinforced zone unless noted otherwise in the plans. Provide reinforced concrete coping and pile sleeves as required. Design and construct MSE retaining walls based on actual elevations and wall dimensions in accordance with the contract and accepted submittals. Use a prequalified MSE Wall Installer to construct MSE retaining walls.

Define MSE wall terms as follows:
- Geosynthetic or Geogrid Reinforcement – Polyester Type (PET), HDPE or Polypropylene (PP) geogrid reinforcement,
- Geogrid – PET, HDPE or PP geogrid,
- Reinforcement – Steel or geogrid reinforcement,
- Aggregate – Coarse or fine aggregate,
- Panel – Precast concrete panel,
- Coping – Precast or CIP concrete coping,
- MSE Wall – Mechanically stabilized earth retaining wall,
- MSE Wall Vendor – Vendor supplying the chosen MSE wall system,
- MSE Panel Wall – MSE wall with panels,
- MSE Segmental Wall – MSE wall with segmental retaining wall (SRW) units and
- Abutment Wall – MSE wall with bridge foundations in any portion of the reinforced zone or an MSE wall connected to an abutment wall (Even if bridge foundations only penetrate a small part of the reinforced zone, the entire MSE wall is considered an abutment wall).

For bridge approach fills behind end bents with MSE abutment walls, design reinforcement connected to end bent caps in accordance with the plans and this provision. Construct Type III Reinforced Bridge Approach Fills in accordance with the Bridge Approach Fills provision and Roadway Detail Drawing No. 422D10.

Use an approved MSE wall system in accordance with the plans and any NCDOT restrictions or exceptions for the chosen system. Value engineering proposals for other MSE wall systems will not be considered. Do not use MSE wall systems with an “approved for provisional use” status for abutment walls or MSE walls subject to scour, walls with design heights greater than 35 ft or walls supporting or adjacent to railroads or interstate highways. The list of approved MSE wall systems with approval status is available from: connect.ncdot.gov/resources/Geological/Pages/Products.aspx

2.0 MATERIALS

Refer to the Standard Specifications.

<table>
<thead>
<tr>
<th>Item</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate</td>
<td>1014</td>
</tr>
</tbody>
</table>
Corrugated Steel Pipe 1032-3
Epoxy, Type 3A 1081
Geosynthetics 1056
Grout, Type 3 1003
Joint Materials 1028
Portland Cement Concrete, Class A 1000
Precast Retaining Wall Coping 1077
Reinforcing Steel 1070
Retaining Wall Panels 1077
Segmental Retaining Wall Units 1040-4
Select Material, Class V 1016
Shoulder Drain Materials 816-2
Steel Pipe 1036-4(A)

Use galvanized corrugated steel pipe with a zinc coating weight of 2 oz/sf (G200) for pile sleeves. Provide Type 2 geotextile for filtration and separation geotextiles. Use Class A concrete for CIP coping, leveling concrete and pads. Use galvanized steel pipe, threaded rods and nuts for the PET geogrid reinforcement vertical obstruction detail. Provide galvanized Grade 36 anchor rods and Grade A hex nuts that meet AASHTO M 314 for threaded rods and nuts.

Use panels and SRW units from producers approved by the Department and licensed by the MSE Wall Vendor. Provide steel strip connectors embedded in panels fabricated from structural steel that meets the requirements for steel strip reinforcement. Unless required otherwise in the contract, produce panels with a smooth flat final finish that meets Article 1077-11 of the Standard Specifications. Accurately locate and secure reinforcement connectors in panels and maintain required concrete cover. Produce panels within 1/4” of the panel dimensions shown in the accepted submittals.

Damaged panels or SRW units with excessive discoloration, chips or cracks as determined by the Engineer will be rejected. Do not damage reinforcement connection devices or mechanisms in handling or storing panels and SRW units.

Store steel materials on blocking at least 12” above the ground and protect it at all times from damage; and when placing in the work make sure it is free from dirt, dust, loose mill scale, loose rust, paint, oil or other foreign materials. Handle and store geotextiles and geogrids in accordance with Article 1056-2 of the Standard Specifications. Load, transport, unload and store MSE wall materials so materials are kept clean and free of damage. Bent, damaged or defective materials will be rejected.

A. Aggregate

Use standard size No. 57, 57M, 67 or 78M that meets Table 1005-1 of the Standard Specifications for coarse aggregate and the following for fine aggregate:

1. Standard size No. 1S, 2S, 2MS or 4S that meets Table 1005-2 of the Standard Specifications or
2. Gradation that meets Class III, Type 3 select material in accordance with Article 1016-3 of the *Standard Specifications*.

Fine aggregate is exempt from mortar strength in Subarticle 1014-1(E) of the *Standard Specifications*. Use fine aggregate with a maximum organic content of 1.0%. Provide aggregate with electrochemical properties that meet the following requirements:

<table>
<thead>
<tr>
<th>AGGREGATE pH REQUIREMENTS</th>
<th>Reinforcement or Connector Material</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate Type (in reinforced zone)</td>
<td>Steel</td>
<td>5 – 10</td>
</tr>
<tr>
<td>Coarse or Fine</td>
<td>PET</td>
<td>5 – 8</td>
</tr>
<tr>
<td>Coarse or Fine</td>
<td>Polyolefin (HDPE or Polypropylene)</td>
<td>4.5 – 9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AGGREGATE CHEMICAL REQUIREMENTS (Steel Reinforcement/Connector Materials Only)</th>
<th>Resistivity</th>
<th>Chlorides</th>
<th>Sulfates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate Type (in reinforced zone)</td>
<td>≥ 5,000 Ω · cm</td>
<td>≤ 100 ppm</td>
<td>≤ 200 ppm</td>
</tr>
<tr>
<td>Coarse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fine</td>
<td>≥ 3,000 Ω · cm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Use aggregate from sources participating in the Department’s Aggregate QC/QA Program as described in Section 1006 of the *Standard Specifications*. Sample and test aggregate in accordance with the *Mechanically Stabilized Earth Wall Aggregate Sampling and Testing Procedures*. Electrochemical testing is only required for coarse aggregate from sources in the Coastal Plain as defined by Subarticle 1018-2(B)(1).

B. Reinforcement

Provide steel or geosynthetic reinforcement supplied by the MSE Wall Vendor or a manufacturer approved or licensed by the vendor. Use reinforcement approved for the chosen MSE wall system. The list of approved reinforcement for each MSE wall system is available from the website shown elsewhere in this provision.

1. Steel Reinforcement

Provide Type 1 material certifications in accordance with Article 106-3 of the *Standard Specifications* for steel reinforcement. Use welded wire grid reinforcement (“mesh”, “mats” and “ladders”) that meet Article 1070-3 of the *Standard Specifications* and steel strip reinforcement (“straps”) that meet ASTM A572, A1011 or A463. Use 10 gauge or heavier structural steel Grade 50 or higher for steel strip reinforcement. Galvanize steel reinforcement in accordance with Section 1076 of the *Standard Specifications* or provide aluminized steel strip reinforcement that meet ASTM A463, Type 2-100.
2. Geosynthetic Reinforcement

Use HDPE or PP geogrid for geogrid reinforcement connected to backwalls of end bent caps. Use PET or HDPE geogrid for geogrid reinforcement connected to SRW units and only HDPE geogrid for geogrid reinforcement connected to panels.

Define machine direction (MD) and cross-machine direction (CD) for geogrids per Article 1056-3 of the *Standard Specifications*. Provide Type 1 material certifications and identify geogrid reinforcement in accordance with Article 1056-3 of the *Standard Specifications*.

Provide extruded geogrids manufactured from punched and drawn polypropylene sheets for PP geogrids that meet the following:

<table>
<thead>
<tr>
<th>Property</th>
<th>Requirement</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aperture Dimensions</td>
<td>1" x 1.2"</td>
<td>N/A</td>
</tr>
<tr>
<td>Minimum Rib Thickness</td>
<td>0.07" x 0.07"</td>
<td>N/A</td>
</tr>
<tr>
<td>Tensile Strength @ 2% Strain</td>
<td>580 lb/ft x 690 lb/ft</td>
<td>ASTM D6637, Method A</td>
</tr>
<tr>
<td>Tensile Strength @ 5% Strain</td>
<td>1,200 lb/ft x 1,370 lb/ft</td>
<td></td>
</tr>
<tr>
<td>Ultimate Tensile Strength</td>
<td>1,850 lb/ft x 2,050 lb/ft</td>
<td></td>
</tr>
<tr>
<td>Junction Efficiency (MD)</td>
<td>93%</td>
<td>ASTM D7737</td>
</tr>
<tr>
<td>Flexural Rigidity</td>
<td>2,000,000 mg–cm</td>
<td>ASTM D7748</td>
</tr>
<tr>
<td>Aperture Stability Modulus</td>
<td>0.55 lb–ft/degrees</td>
<td>ASTM D7864</td>
</tr>
<tr>
<td>UV Stability (Retained Strength)</td>
<td>100% (after 500 hr of exposure)</td>
<td>ASTM D4355</td>
</tr>
</tbody>
</table>

1. MARV per Article 1056-3 of the *Standard Specifications* except dimensions and thickness are nominal.
2. Requirement for MD x CD.
3. Junction Efficiency (%) = (Average Junction Strength (Xave) / Ultimate Tensile Strength in the MD from ASTM D6637, Method A) × 100.
4. Test specimens two ribs wide, with transverse ribs cut flush with exterior edges of longitudinal ribs, and sufficiently long to enable measurement of the overhang dimension.
5. Applied moment of 17.7 lb–inch (torque increment).

C. Bearing Pads

For MSE panel walls, use bearing pads that meet Section 3.6.1.a of the *FHWA Design and Construction of Mechanically Stabilized Earth Walls and Reinforced Soil Slopes – Volume I* (Publication No. FHWA-NHI-10-024) except durometer hardness for rubber pads may be 60 or 80 ± 5 and density testing for HDPE pads may be in accordance with ASTM D1505 or D792. Provide bearing pads with thicknesses that meet the following:

<table>
<thead>
<tr>
<th>Facing Area per Panel (A)</th>
<th>Minimum Pad Thickness After Compression (based on 2 times panel weight above pads)</th>
</tr>
</thead>
</table>
TIP

GT-#.5

[County Name(s)] County(ies)

<table>
<thead>
<tr>
<th>A ≤ 30 sf</th>
<th>1/2"</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 sf < A ≤ 75 sf</td>
<td>3/4"</td>
</tr>
</tbody>
</table>

D. Miscellaneous Components

Miscellaneous components may include connectors (e.g., anchors, bars, clamps, pins, plates, ties, etc.), fasteners (e.g., bolts, nuts, washers, etc.) and any other MSE wall components not included above. Galvanize steel components in accordance with Section 1076 of the Standard Specifications. Provide miscellaneous components approved for the chosen MSE wall system. The list of approved miscellaneous components for each MSE wall system is available from the website shown elsewhere in this provision.

3.0 Preconstruction Requirements

A. MSE Wall Surveys

The Retaining Wall Plans show a plan view, typical sections, details, notes and an elevation or profile view (wall envelope) for each MSE wall. Before beginning MSE wall design, survey existing ground elevations shown in the plans and other elevations in the vicinity of MSE wall locations as needed. For proposed slopes above or below MSE walls, survey existing ground elevations to at least 10 ft beyond slope stake points. Based on these elevations, finished grades and actual MSE wall dimensions and details, submit revised wall envelopes for acceptance. Use accepted wall envelopes for design.

B. MSE Wall Designs

For MSE wall designs, submit PDF files of working drawings and design calculations at least 30 days before the preconstruction meeting. Note name and NCDOT ID number of the panel or SRW unit production facility on working drawings. Do not begin MSE wall construction until a design submittal is accepted.

Use a prequalified MSE Segmental Wall Design Consultant to design MSE segmental walls. Provide MSE segmental wall designs sealed by a Design Engineer approved as a Geotechnical Engineer (key person) for the MSE Segmental Wall Design Consultant. Provide MSE panel wall designs sealed by a Design Engineer licensed in the state of North Carolina and employed or contracted by the MSE Wall Vendor.

Design MSE walls in accordance with the plans, AASHTO LRFD Bridge Design Specifications and any NCDOT restrictions for the chosen MSE wall system unless otherwise required. Design MSE walls for seismic if walls are located in seismic zone 2 based on Figure 2-1 of the Structure Design Manual. Connect reinforcement to panels or SRW units with methods or devices approved for the chosen system. Use a uniform reinforcement length throughout the wall height of at least 0.7H with H as shown in the plans or 6 ft, whichever is longer, unless noted otherwise in the plans. Extend the reinforced zone at least 6" beyond end of reinforcement. Do not locate
drains, the reinforced zone or leveling pads outside right-of-way or easement limits.

Use the simplified method for determining maximum reinforcement loads and design parameters approved for the chosen MSE wall system or default values in accordance with the AASHTO LRFD specifications. Design steel components including reinforcement and connectors for the design life noted in the plans and aggregate type in the reinforced zone. If an MSE wall system with geogrid reinforcement includes any steel parts for obstructions, bin walls, connections or other components, design steel exposed to aggregate for the design life noted in the plans and aggregate type in the reinforced zone. Use “loss of galvanizing” metal loss rates for nonaggressive backfill in accordance with the AASHTO LRFD specifications for galvanized and aluminized steel and metal loss rates for carbon steel in accordance with the following:

CARBON STEEL CORROSION RATES

<table>
<thead>
<tr>
<th>Aggregate Type (in reinforced zone)</th>
<th>Carbon Steel Loss Rate (after coating depletion)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse</td>
<td>0.47 mil/year</td>
</tr>
<tr>
<td>Fine (except abutment walls)</td>
<td>0.58 mil/year</td>
</tr>
<tr>
<td>Fine (abutment walls)</td>
<td>0.70 mil/year</td>
</tr>
</tbody>
</table>

For PET or HDPE geogrid reinforcement and geosynthetic connectors, use approved geosynthetic properties for the design life noted in the plans and aggregate type in the reinforced zone. For geogrid reinforcement connected to end bent caps, embed geosynthetic reinforcement or connectors in caps as shown in the plans. For PP geogrid reinforcement connected to end bent caps, use the following design parameters for the aggregate type in the reinforced approach fill.

PP GEOGRIND REINFORCEMENT DESIGN PARAMETERS

<table>
<thead>
<tr>
<th>Aggregate Type (in reinforced zone)</th>
<th>T_{al} (MD)</th>
<th>F^*</th>
<th>α</th>
<th>ρ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse</td>
<td>400 lb/ft</td>
<td>0.70</td>
<td>0.8</td>
<td>32.0°</td>
</tr>
<tr>
<td>Fine</td>
<td>428 lb/ft</td>
<td>0.54</td>
<td>0.8</td>
<td>28.35°</td>
</tr>
</tbody>
</table>

Where,

- T_{al} = long-term design strength (LTDS),
- F^* = pullout resistance factor,
- α = scale effect correction factor and
- ρ = soil-geogrid friction angle.

When noted in the plans, design MSE walls for a live load (traffic) surcharge of 250 psf in accordance with Figure C11.5.6-3(b) of the AASHTO LRFD specifications. For steel beam guardrail with 8 ft posts or concrete barrier rail above MSE walls, analyze top 2 reinforcement layers for traffic impact loads in accordance with Section 7.2 of the FHWA MSE wall manual shown elsewhere in this provision except use the following for geosynthetic reinforcement rupture:

$$\phi T_{al} R_e \geq T_{max} + \left(T_I / RF_{CR} \right)$$
Where,
\[\phi = \text{resistance factor for tensile resistance in accordance with Section 7.2.1 of the FHWA MSE wall manual,} \]
\[T_{al} = \text{long-term geosynthetic design strength approved for chosen MSE wall system,} \]
\[R_{c} = \text{reinforcement coverage ratio } = 1 \text{ for continuous geosynthetic reinforcement,} \]
\[T_{\text{max}} = \text{factored static load in accordance with Section 7.2 of the FHWA MSE wall manual,} \]
\[T_{i} = \text{factored impact load in accordance with Section 7.2 of the FHWA MSE wall manual and} \]
\[RF_{CR} = \text{creep reduction factor approved for chosen MSE wall system.} \]

When shown in the plans for abutment walls, use pile sleeves to segregate piles from aggregate in the reinforced zone. If existing or future obstructions such as foundations, guardrail, fence or handrail posts, moment slabs, pavements, pipes, inlets or utilities will interfere with reinforcement, maintain a clearance of at least 3" between obstructions and reinforcement unless otherwise approved. Design reinforcement for obstructions and locate reinforcement layers so all of reinforcement length is within 3" of corresponding connection elevations. Modify PET geogrid reinforcement for obstructions as shown in the plans.

Use 6" thick CIP unreinforced concrete leveling pads beneath panels and SRW units that are continuous at steps and extend at least 6" in front of and behind bottom row of panels or SRW units. Unless required otherwise in the plans, embed top of leveling pads in accordance with the following requirements:

<table>
<thead>
<tr>
<th>Front Slope(^1) (H:V)</th>
<th>Minimum Embedment Depth(^2) (whichever is greater)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6:1 or flatter (except abutment walls)</td>
<td>H/20</td>
</tr>
<tr>
<td>6:1 or flatter (abutment walls)</td>
<td>H/10</td>
</tr>
<tr>
<td>> 6:1 to < 3:1</td>
<td>H/10</td>
</tr>
<tr>
<td>3:1 to 2:1</td>
<td>H/7</td>
</tr>
</tbody>
</table>

1. Front slope is as shown in the plans.
2. Define “H” as the maximum design height plus embedment per wall with the design height and embedment as shown in the plans.

When noted in the plans, locate a continuous aggregate shoulder drain along the base of the reinforced zone behind the aggregate. Provide wall drainage systems consisting of drains and outlet components in accordance with Roadway Standard Drawing No. 816.02.

For MSE panel walls, cover joints at back of panels with filtration geotextiles at least 12" wide. If the approval of the chosen MSE wall system does not require a minimum
number of bearing pads, provide the number of pads in accordance with the following:

<table>
<thead>
<tr>
<th>Facing Area per Panel (A)</th>
<th>Maximum Wall Height Above Horizontal Panel Joint</th>
<th>Minimum Number of Pads per Horizontal Panel Joint</th>
</tr>
</thead>
<tbody>
<tr>
<td>A ≤ 30 sf</td>
<td>25 ft</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>35 ft(^1)</td>
<td>3</td>
</tr>
<tr>
<td>30 sf < A ≤ 75 sf</td>
<td>25 ft</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>35 ft(^1)</td>
<td>4</td>
</tr>
</tbody>
</table>

1. Additional bearing pads per horizontal panel joint may be required for wall heights above joints greater than 35 ft.

For MSE segmental walls, coarse aggregate is required in any SRW unit core spaces and between and behind SRW units for a horizontal distance of at least 18". Separation geotextiles are required between the aggregate and overlying fill or pavement sections except when concrete pavement, full depth asphalt or cement treated base is placed directly on aggregate. When noted in the plans, separation geotextiles are also required at the back of the reinforced zone between the aggregate and backfill or natural ground. Unless required otherwise in the plans, use reinforced concrete coping at top of walls that meets the following requirements:

1. Coping dimensions as shown in the plans,
2. At the Contractor’s option, coping that is precast or CIP concrete for MSE panel walls unless CIP coping is required as shown in the plans,
3. CIP concrete coping for MSE segmental walls and
4. At the Contractor’s option and when shown in the plans, CIP concrete coping that extends down back of panels or SRW units or connects to panels or SRW units with dowels.

For MSE segmental walls with dowels, attach dowels to top courses of SRW units in accordance with the following:

1. Set dowels in core spaces of SRW units filled with grout instead of coarse aggregate or
2. Embed adhesively anchored dowels in holes of solid SRW units with epoxy.

For MSE panel walls with coping, connect CIP concrete coping or leveling concrete for precast concrete coping to top row of panels with dowels cast into panels. When concrete barrier rail is required above MSE walls, use concrete barrier rail with moment slab as shown in the plans.

Submit working drawings and design calculations for acceptance in accordance with Article 105-2 of the Standard Specifications. Submit working drawings showing plan views, wall profiles with foundation pressures, typical sections with reinforcement and
connection details, aggregate locations and types, geotextile locations and details of leveling pads, panels or SRW units, coping, bin walls, slip joints, pile sleeves, etc. If necessary, include details on working drawings for concrete barrier rail with moment slab, reinforcement splices if allowed for the chosen MSE wall system, reinforcement connected to end bent caps, curved MSE walls with tight (short) radii and obstructions extending through walls or interfering with reinforcement, leveling pads, barriers or moment slabs. Submit design calculations for each wall section with different surcharge loads, geometry or material parameters. At least one analysis is required for each wall section with different reinforcement lengths. When designing MSE walls with computer software other than MSEW, use MSEW, version 3.0 with update 14.96 or later, manufactured by ADAMA Engineering, Inc. to verify the design. At least one MSEW analysis is required per 100 ft of wall length with at least one analysis for the wall section with the longest reinforcement. Submit electronic MSEW input files and PDF output files with design calculations.

C. Preconstruction Meeting

Before starting MSE wall construction, hold a preconstruction meeting to discuss the construction and inspection of the MSE walls. If this meeting occurs before all MSE wall submittals have been accepted, additional preconstruction meetings may be required before beginning construction of MSE walls without accepted submittals. The Resident or Bridge Maintenance Engineer, Area Construction Engineer, Geotechnical Operations Engineer, Contractor and MSE Wall Installer Superintendent will attend preconstruction meetings.

4.0 CORROSION MONITORING

Corrosion monitoring is required for MSE walls with steel reinforcement. The Engineer will determine the number of monitoring locations and where to install the instrumentation. Contact M&T before beginning wall construction. M&T will provide the corrosion monitoring instrumentation kits and if necessary, assistance with installation.

5.0 SITE ASSISTANCE

Unless otherwise approved, an MSE Wall Vendor representative is required to assist and guide the MSE Wall Installer on-site for at least 8 hours when the first panels or SRW units and reinforcement layer are placed. If problems are encountered during construction, the Engineer may require the vendor representative to return to the site for a time period determined by the Engineer.

6.0 CONSTRUCTION METHODS

Control drainage during construction in the vicinity of MSE walls. Direct run off away from MSE walls, aggregate and backfill. Contain and maintain aggregate and backfill and protect material from erosion.

Excavate as necessary for MSE walls in accordance with the accepted submittals. If applicable and at the Contractor’s option, use temporary shoring for wall construction
instead of temporary slopes to construct MSE walls. Define “temporary shoring for wall construction” as temporary shoring not shown in the plans or required by the Engineer including shoring for OSHA reasons or the Contractor’s convenience.

Unless required otherwise in the plans, install foundations and if required, pile sleeves located in the reinforced zone before placing aggregate or reinforcement. Brace piles in the reinforced zone to maintain alignment when placing and compacting aggregate. Secure piles together with steel members near top of piles. Clamp members to piles instead of welding if bracing is at or below pile cut-off elevations.

Notify the Engineer when foundation excavation is complete. Do not place leveling pad concrete, aggregate or reinforcement until excavation dimensions and foundation material are approved.

Construct CIP concrete leveling pads at elevations and with dimensions shown in the accepted submittals and in accordance with Section 420 of the Standard Specifications. Cure leveling pads at least 24 hours before placing panels or SRW units.

Erect and support panels and stack SRW units so the final wall position is as shown in the accepted submittals. Stagger SRW units to create a running bond by centering SRW units over joints in the row below as shown in the accepted submittals. Space bearing pads in horizontal panel joints as shown in the accepted submittals and cover all panel joints with filtration geotextiles as shown in the accepted submittals. Attach filtration geotextiles to back of panels with adhesives, tapes or other approved methods.

Construct MSE walls with the following tolerances:

A. SRW units are level from front to back and between units when checked with a 4 ft long level,

B. Vertical joint widths are 1/4" maximum for SRW units and 3/4", ±1/4" for panels,

C. Final wall face is within 3/4" of horizontal and vertical alignment shown in the accepted submittals when measured along a 10 ft straightedge and

D. Final wall plumbness (batter) is not negative (wall face leaning forward) and within 0.5° of vertical unless otherwise approved.

Place reinforcement at locations and elevations shown in the accepted submittals and within 3” of corresponding connection elevations. Install reinforcement with the direction shown in the accepted submittals. Before placing aggregate, pull geogrid reinforcement taut so it is in tension and free of kinks, folds, wrinkles or creases. Reinforcement may be spliced once per reinforcement length if shown in the accepted submittals. Use reinforcement pieces at least 6 ft long. Contact the Engineer when unanticipated existing or future obstructions such as foundations, guardrail, fence or handrail posts, pavements, pipes, inlets or utilities will interfere with reinforcement. To avoid obstructions, deflect, skew or modify reinforcement as shown in the accepted submittals.

Place aggregate in the reinforced zone in 8" to 10" thick lifts. Compact fine aggregate in accordance with Subarticle 235-3(C) of the Standard Specifications. Use only hand
operated compaction equipment to compact aggregate within 3 ft of panels or SRW units. At a distance greater than 3 ft, compact aggregate with at least 4 passes of an 8 ton to 10 ton vibratory roller in a direction parallel to the wall face. Smooth wheeled or rubber tired rollers are also acceptable for compacting aggregate. Do not use sheepfoot, grid rollers or other types of compaction equipment with feet. Do not displace or damage reinforcement when placing and compacting aggregate. End dumping directly on geogrids is not permitted. Do not operate heavy equipment on reinforcement until it is covered with at least 8” of aggregate. Replace any damaged reinforcement to the satisfaction of the Engineer.

Backfill for MSE walls outside the reinforced zone in accordance with Article 410-8 of the Standard Specifications. If a drain is required, install wall drainage systems as shown in the accepted submittals and in accordance with Section 816 of the Standard Specifications. If pile sleeves are required, fill sleeves with loose uncompacted sand before constructing end bent caps.

Install dowels as necessary for SRW units and place and construct coping and leveling concrete as shown in the accepted submittals. Construct leveling concrete in accordance with Section 420 of the Standard Specifications. Construct CIP concrete coping in accordance with Subarticle 452-4(B) of the Standard Specifications. When single faced precast concrete barrier is required in front of and against MSE walls, stop coping just above barrier so coping does not interfere with placing barrier up against wall faces. If the gap between a single faced barrier and wall face is wider than 2”, fill gap with Class V select material (standard size No. 78M stone). Otherwise, fill gap with backer rod and seal joint between barrier and MSE wall with silicone sealant.

When separation geotextiles are required, overlap adjacent geotextiles at least 18” and hold geotextiles in place with wire staples or anchor pins as needed. Seal joints above and behind MSE walls between coping and concrete slope protection with silicone sealant.

7.0 MEASUREMENT AND PAYMENT

MSE Retaining Wall No. ___ will be measured and paid in square feet. MSE walls will be measured as the square feet of wall face area with the pay height equal to the difference between top of wall and top of leveling pad elevations. Define “top of wall” as top of coping or top of panels or SRW units for MSE walls without coping.

The contract unit price for *MSE Retaining Wall No. ___* will be full compensation for providing designs, submittals, labor, tools, equipment and MSE wall materials, excavating, backfilling, hauling and removing excavated materials and supplying site assistance, leveling pads, panels, SRW units, reinforcement, aggregate, wall drainage systems, geotextiles, bearing pads, coping, miscellaneous components and any incidentals necessary to construct MSE walls. The contract unit price for *MSE Retaining Wall No. ___* will also be full compensation for reinforcement and connector design for reinforcement connected to end bent caps, wall modifications for obstructions, pile sleeves filled with sand, joints sealed with silicone sealant and gaps between barriers and MSE walls filled with backer rod or No. 78M stone, if required.
No separate payment will be made for temporary shoring for wall construction. Temporary shoring for wall construction will be incidental to the contract unit price for *MSE Retaining Wall No. __*.

The contract unit price for *MSE Retaining Wall No. __* does not include the cost for ditches, fences, handrails, barrier or guardrail associated with MSE walls as these items will be paid for elsewhere in the contract. The contract unit price for *MSE Retaining Wall No. __* also does not include the cost for constructing bridge approach fills behind end bents with MSE abutment walls. See *Bridge Approach Fills* provision for measurement and payment of Type III Reinforced Bridge Approach Fills.

Where it is necessary to provide backfill material behind the reinforced zone from sources other than excavated areas or borrow sources used in connection with other work in the contract, payment for furnishing and hauling such backfill material will be paid as extra work in accordance with Article 104-7 of the *Standard Specifications*. Placing and compacting such backfill material is not considered extra work but is incidental to the work being performed.

Payment will be made under:

<table>
<thead>
<tr>
<th>Pay Item</th>
<th>Pay Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSE Retaining Wall No. __</td>
<td>Square Foot</td>
</tr>
</tbody>
</table>