9th Geo3T2 Conference

Drilled Shaft Instrumentation

Jamal Nusairat, Ph.D., P.E.
Richard L. Engel, P.E.

April 11, 2017

Presentation Outline

1. Pomeroy Mason Bridge
2. Ironton Russell Bridge
3. Load Test Database
4. CUY-90 Bridge – Slope Failure
5. ERI-60 - Slope Failure
6. HUR-99-13.77 - Tieback VE
7. MOT-75-12.00 - Piling VE
8. FRA-Dodridge St. -Tiedown
1. Pomeroy Mason Bridge Over the Ohio River

Drilled Shaft Load Testing 2003
Pomeroy-Mason Cable Stay Bridge Vertical and Lateral Load Testing Plan Schematic View
Table 14. Calculated Allowable Unit Base Resistances

<table>
<thead>
<tr>
<th>Bedrock Horizon</th>
<th>Approximate Elevation Range</th>
<th>Allowable Unit Base Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WV Tower</td>
<td>Ohio Tower</td>
</tr>
<tr>
<td></td>
<td>(psf)</td>
<td>(tsf)</td>
</tr>
<tr>
<td>Shale With Interbedded</td>
<td>478 to 463</td>
<td>491 to 473</td>
</tr>
<tr>
<td>Siltstone</td>
<td>463 to 435</td>
<td>473 to 448</td>
</tr>
<tr>
<td>Siltstone (6" Diameter Shafts)</td>
<td>435 to 421</td>
<td>448 to 434</td>
</tr>
<tr>
<td>Siltstone (8" Diameter Shafts)</td>
<td>435 to 421</td>
<td>448 to 434</td>
</tr>
<tr>
<td>Siltstone (10" Diameter Shafts)</td>
<td>435 to 421</td>
<td>448 to 434</td>
</tr>
</tbody>
</table>

O-Cell Test at Jack Limit = 100 TSF

Table 13. Calculated Allowable Unit Side Resistances

<table>
<thead>
<tr>
<th>Bedrock Horizon</th>
<th>Approximate Elevation Range</th>
<th>Allowable Unit Side Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WV Tower</td>
<td>Ohio Tower</td>
</tr>
<tr>
<td></td>
<td>(psf)</td>
<td>(tsf)</td>
</tr>
<tr>
<td>Shale With Interbedded</td>
<td>478 to 483</td>
<td>491 to 473</td>
</tr>
<tr>
<td>Siltstone</td>
<td>463 to 435</td>
<td>473 to 446</td>
</tr>
<tr>
<td>Siltstone</td>
<td>435 to 421</td>
<td>448 to 434</td>
</tr>
</tbody>
</table>

O-Cell Average Ultimate Side Friction = 11.2 tsf
Allowable = 5.6 tsf

O-Cell Average Ultimate Side Friction = 4.3 tsf
Allowable = 2.15 tsf
Comparison of Drilled Shafts Deflection with Depth

9th Geo3T² Conference

2. Ironton Russell Bridge
 Over the Ohio River
 Drilled Shaft Load Testing
 2012
Ironton-Russell Cable Stay Bridge

Test Planning and Preparation

Lateral Load Test

O-Cell Test 9000 Tons
Test Shafts Instrumentation

O-Cell Testing reached capacity without moving the tip beyond 1" (~100 TSF)
3. Load Test Database

26 Lateral Load Tests 1994 - 2012

Ohio Bedrock – Map of Testing
The bedrock map is from the ODNR website
4. CUY-90 Bridge
Cleveland, Ohio - 1998
CUY-90-Innerbelt Bridge

GAS IN THE DRILLED SHAFT EXCAVATION

Stabilization Structure
3-D Stability Analysis

CCG2 Alternative 1
3-D Stability Analysis
CCG2 Alternative 1
CCG2 Alternative 1

CCG1 – Grading

- Horizontal Drains
- Pressure Relief Ducts
- Unloading
<table>
<thead>
<tr>
<th>Area (in²)</th>
<th>Ixx (in⁴)</th>
<th>Iyy</th>
<th>tf & tw (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP 10x42</td>
<td>12.4</td>
<td>119</td>
<td>40.3</td>
</tr>
<tr>
<td>HP 14x117</td>
<td>34.4</td>
<td>1220</td>
<td>443</td>
</tr>
<tr>
<td>HP 18x204</td>
<td>60.2</td>
<td>3480</td>
<td>1120</td>
</tr>
</tbody>
</table>
CUY-90 Bridge

9th Geo3T2 Conference

5. ERI-60-Slope Failure

Drilled Shaft Design
Instrumentation
ERI-60 Elevation

PLAN

203' 254' 254' 230' 190'

PIER 1 PIER 2 PIER 3 PIER 4

ELEVATION

SR 60 Over Vermilion River
12 feet diameter
80 feet long
40 feet into Ohio Shale
Force Diagram

ERI-60 ROCK ANCHOR SCHEMATIC

Horizontal Component

420 Kips/anchor

Moment

Ground Surface

Vertical Component
6. HUR-99-13.77 VE

Innovative retaining wall with narrow footing and vertical rock anchors
9th Geo3T2 Conference

7. MOT-75-12.00 VE
Dayton, Ohio
2013

Perfect Pile
$10,000,000 cost for geotechnical piling

Cost components

- Pile
- Pile points
- Crew time to unload the piles
- Crew time and cost to drive the pile
- Time and material for splices
- Crew time to fill with concrete
<table>
<thead>
<tr>
<th>File</th>
<th>Wall Thick.</th>
<th>Min. wall thick.</th>
<th>Cover</th>
<th>Drilled</th>
<th>Drilled (in)</th>
<th>Under</th>
<th>Diameter</th>
<th>Length</th>
<th>Depth</th>
<th>Thrust</th>
<th>Time to drive</th>
<th>Pile cost</th>
<th>Total cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>0.250</td>
<td>0.247</td>
<td>Closed</td>
<td>200</td>
<td>19-32</td>
<td>47</td>
<td>50</td>
<td>50</td>
<td>18</td>
<td>2,636</td>
<td>1,490,874</td>
<td>$17,121</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.212</td>
<td>0.203</td>
<td>Closed</td>
<td>280</td>
<td>19-32</td>
<td>47</td>
<td>50</td>
<td>55</td>
<td>18</td>
<td>4,606</td>
<td>2,549,566</td>
<td>$25,542</td>
<td>15,545</td>
</tr>
<tr>
<td>14</td>
<td>0.202</td>
<td>0.193</td>
<td>Closed</td>
<td>320</td>
<td>19-32</td>
<td>47</td>
<td>50</td>
<td>55</td>
<td>18</td>
<td>9,618</td>
<td>4,769,422</td>
<td>$44,432</td>
<td>15,322</td>
</tr>
<tr>
<td>14</td>
<td>0.175</td>
<td>0.166</td>
<td>Closed</td>
<td>450</td>
<td>19-32</td>
<td>47</td>
<td>55</td>
<td>55</td>
<td>18</td>
<td>4,875</td>
<td>3,535,584</td>
<td>$26,120</td>
<td>10,284</td>
</tr>
<tr>
<td>14</td>
<td>0.488</td>
<td>0.425</td>
<td>Closed</td>
<td>560</td>
<td>19-32</td>
<td>62</td>
<td>50</td>
<td>55</td>
<td>18</td>
<td>2,113</td>
<td>1,490,874</td>
<td>$17,121</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.500</td>
<td>0.485</td>
<td>Closed</td>
<td>510</td>
<td>19-32</td>
<td>62</td>
<td>50</td>
<td>55</td>
<td>18</td>
<td>2,636</td>
<td>1,490,874</td>
<td>$17,121</td>
<td>11,112</td>
</tr>
<tr>
<td>14</td>
<td>0.625</td>
<td>0.506</td>
<td>Closed</td>
<td>700</td>
<td>19-32</td>
<td>62</td>
<td>60</td>
<td>55</td>
<td>18</td>
<td>4,606</td>
<td>4,769,422</td>
<td>$44,432</td>
<td>15,322</td>
</tr>
<tr>
<td>14</td>
<td>0.750</td>
<td>0.625</td>
<td>Closed</td>
<td>1,100</td>
<td>19-32</td>
<td>62</td>
<td>60</td>
<td>55</td>
<td>18</td>
<td>9,618</td>
<td>4,769,422</td>
<td>$44,432</td>
<td>15,322</td>
</tr>
<tr>
<td>14</td>
<td>0.625</td>
<td>0.506</td>
<td>Closed</td>
<td>1,100</td>
<td>19-32</td>
<td>62</td>
<td>60</td>
<td>55</td>
<td>18</td>
<td>9,618</td>
<td>4,769,422</td>
<td>$44,432</td>
<td>15,322</td>
</tr>
<tr>
<td>14</td>
<td>0.750</td>
<td>0.625</td>
<td>Closed</td>
<td>1,100</td>
<td>19-32</td>
<td>62</td>
<td>60</td>
<td>55</td>
<td>18</td>
<td>9,618</td>
<td>4,769,422</td>
<td>$44,432</td>
<td>15,322</td>
</tr>
<tr>
<td>14</td>
<td>0.625</td>
<td>0.506</td>
<td>Closed</td>
<td>1,100</td>
<td>19-32</td>
<td>62</td>
<td>60</td>
<td>55</td>
<td>18</td>
<td>9,618</td>
<td>4,769,422</td>
<td>$44,432</td>
<td>15,322</td>
</tr>
<tr>
<td>14</td>
<td>0.750</td>
<td>0.625</td>
<td>Closed</td>
<td>1,100</td>
<td>19-32</td>
<td>62</td>
<td>60</td>
<td>55</td>
<td>18</td>
<td>9,618</td>
<td>4,769,422</td>
<td>$44,432</td>
<td>15,322</td>
</tr>
<tr>
<td>14</td>
<td>0.625</td>
<td>0.506</td>
<td>Closed</td>
<td>1,100</td>
<td>19-32</td>
<td>62</td>
<td>60</td>
<td>55</td>
<td>18</td>
<td>9,618</td>
<td>4,769,422</td>
<td>$44,432</td>
<td>15,322</td>
</tr>
</tbody>
</table>

Foundation Costs

<table>
<thead>
<tr>
<th>Item</th>
<th>Qty</th>
<th>Description</th>
<th>Cost (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>33,325</td>
<td>Total service load on pier (approximate)</td>
<td>$13,325</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Based on Boring 87-8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(lower 3) for cost in build cost</td>
<td></td>
</tr>
</tbody>
</table>

9th Geo³T² Conference

8. FRA- Dodridge Street

Columbus, Ohio

2008

Rock Anchors
Association for Bridge Construction and Design (ABCD)
Northeast Central Ohio Chapters
February 2014
FRA-Dodridge St Bridge

SECTION A-A

- SUBGRADE
- POROUS BIOFILL WITH FILTER FABRIC
- 3'-6" TIE-UP SHEETING CENTERS OR JOINTS
- PROPOSED BEARING
- ELASTOMERIC BEARINGS
- 3'-6" TIE-UP SHEETING CENTERS OR JOINTS
- E-8" 6" DRILLED SHAFT TIE-DOWN (ROCK ANCHOR)

29
Ohio DOT Research Project

State Job Number 134137 and 134348: Design of Rock Socketed Drilled Shafts

- Final Reports are available in PDF at Ohio DOT website:
 http://www.dot.state.oh.us/Divisions/Planning/SPR/Research/reportsandplans/Pages/StructuresReports.aspx