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Executive Summary: 2021 Update Report 

Implemented by the N.C. Department of Transportation (NCDOT) in 2011, the primary purpose of the 

Coastal Monitoring Program is to assess highway vulnerability between Oregon Inlet and Rodanthe and 

is a condition of the 2010 Record of Decision (ROD) for the NC 12- Replacement of the Herbert C. Bonner 

Bridge. The program is conducted in conjunction with the U.S. Fish and Wildlife Service, providing data 

to aid in habitat management decisions within the Pea Island National Wildlife Refuge. This report 

presents detailed monitoring data for the 2021 study year. Conditions throughout the year are 

compared to conditions in the prior year (2020) and baseline conditions (2010).  

This executive summary provides a brief overview of the report results. 

Highway Vulnerability 

The primary indicators of highway vulnerability considered are: 1) distance from ocean to estuarine 

shoreline (island width), 2) dune crest elevation less than 10 feet above the NC 12 centerline, and 3) 

ocean shoreline within 230 feet of the edge of pavement. Though single indicators were found at 

multiple study transects, four primary locations of concern based on multiple indicators were identified: 

 the Canal Zone just north of the freshwater ponds (primarily dunes and 230-foot buffer, some 

transects with island width as well);  

 near the Pea Island Visitors Center between the northernmost and middle ponds (dunes, 230-

foot buffer); 

 the area just south of the Pea Island Breach (island width, dunes); and  

 the S-Curves in northern Rodanthe (island width, dunes, 230-foot buffer).  

These four areas have previously been identified as areas of concern, with the Pea Island Breach and S-

Curves locations showing consistent vulnerability throughout the study timeframe. The Pea Island 

Visitors Center, which has suffered from erosion of the beach and dunes, was first identified in 2017. 

Since that time, the USFWS elevated the Visitors Center building approximately 5 ft above its original 

elevation (in 2020); the building re-opened in December 2021. The S-Curves area is bypassed by the 

Rodanthe Bridge, which was under construction in 2021. 

Morphological Indicators 

The status of other morphological indicators included in the monitoring program as of 2021 are as 

follows: 

 Dune crest (maximum elevation at each study transect): Elevations were highly variable during 

2021 with especially large changes in the Canal Zone. Changes in elevation can be attributed to 

wind and water transport (decreases) and human intervention/earth moving operations 

(increases).  

 Dune toe position and elevation: On average, the September 30, 2021 dune toe position was 

similar to that determined in 2020. The average dune toe elevation was 8.9 ft NAVD, slightly 

lower than the average in 2020 of 9.5 ft NAVD. 

 Beach width: The beach width as of September 30, 2021 was slightly wider on average across 

the study area than that observed in October 2020 (150 ft vs. 142 ft). Beach widths in most of 
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the area within the Rodanthe beach nourishment project have receded to pre-project 

conditions. 

 Erosion resistance volume (volume of beach above mean high water from edge of pavement 

to ocean shoreline): There was a slight increase in the average volume during 2021 (average of 

166.5 cy/ft in 2021 versus average of 166.2 cy/ft in 2020) (for reference, a dump truck can hold 

10 cy). In 2021, profile volumes increased in the northern part of the beach nourishment area, 

remained relatively stable near mile 10.8, and decreased slightly towards Rodanthe. As of 

September 30, 2021, an average of 11 cy/ft more than the April 2014 pre-project conditions 

remained in the study area, primarily in the northern portion. Overall, since the baseline report 

(2010), the erosion resistance volume shows a net decrease over the entire study area of 1.3 M 

cy as of September 2021, despite the addition of 580,000 cy of dredged material disposal in 

2013 and 1.3 M cy of sand during the beach nourishment project in 2014. 

Vegetation and Land Cover/Habitat 

 Habitat Mapping: Color Infrared (CIR) images were used to create habitat maps for Pea Island in 

2021. Habitat classification maps indicate that dominant habitat classes on Pea Island are 

marshes, managed wetlands, shrub, bare sand dune, and beach. The largest changes observed 

in 2020 were from marsh to shrub, shrub to marsh, and from water to beach. The marsh to 

shrub changes are attributed to succession and the shrub to marsh changes are at least partially 

attributable to controlled burns undertaken by the USFWS (see Appendix B). 

Erosion Rate and Shoreline Predictions 

A summary of the erosion rate and shoreline prediction analyses is provided. It is noted that for the 

erosion rate analyses, the February 1, 2022 shoreline was included, because there was no flight in 

December 2021. 

 Erosion rate: Long-term erosion rate trends remain similar to those reported in previous years: 

o Accretion is observed in the first 0.8 miles (Transects 170-200 approximately), with 

relatively low (<+/- 2 feet/year) rates of erosion and accretion south to mile 3. 

o Erosion with rates ranging between 5 and 10 feet/year is observed from miles 3 to 7. 

o A stable to slightly accreting area exists along miles 8 and 9, where the highly vegetated 

dune field is in place. 

o Higher rates of erosion up to 5-12 feet/year are observed from miles 10 south into 

Rodanthe. 

o Slightly lower rates of erosion exist near the Rodanthe pier. 

 Current/5-Year Vulnerability: Currently, a section in the Canal Zone, a section adjacent to the 

north pond and Pea Island Visitors Center area, a narrow region just south of the wide dune 

field area, and the Rodanthe/S-Curves section had shorelines observed within the 230-foot 

buffer. Two sections spanning the currently vulnerable area in the narrow section north of 

Rodanthe as well as sections north and south of the currently vulnerable S-Curves section were 

predicted to be vulnerable within 5 years. These sections are illustrated in Figures 29 to 34. 

 2030 Predicted Shoreline: By 2030, the prediction interval band of shoreline position reaches 

the 230-foot critical buffer in multiple locations, including the Canal Zone, near the Visitors 

Center along the center of the freshwater ponds, adjacent to the southernmost pond and 
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immediately north and south of the Interim Bridge at the Pea Island Breach, as well as in 

northern Rodanthe. These sections are illustrated in Figures 35 through 40. 

 2060 Predicted Shoreline: The 2060 prediction interval band of shoreline position reaches the 

critical buffer along a stretch of NC 12 in the Canal Zone south of Oregon Inlet, along the north 

pond and the Visitors Center and adjacent to the Pea Island Breach. The band lies within or 

landward of the critical buffer and roadway throughout the area of the Rodanthe Bridge. The 

2060 shorelines are illustrated in Figures 42 through 47. 

Breaches 

The locations of the Pea Island and Rodanthe breaches (formed in 2011) continue to be monitored, with 

results as indicated: 

 Pea Island Breach: The Pea Island Breach was closed for all of 2021, with the most seaward 

shoreline position measured in August 2021.  

 Rodanthe Breach: The most seaward positions in this area were also observed in August 2021.  

Storms 

 No tropical systems directly impacted the study area in 2021. Storms with a maximum wave 

height of 6.6 ft or greater for a duration of 8 or more hours were recorded at the USACE Field 

Research Facility in January, February, March, October, and November.  

 The most severe event in 2021 was a coastal storm in November 2021.The NCDOT Traveler 

Information Management System recorded closures during this event from November 7 to 

November 9, 2021. 

USACE Dredging 

 USACE dredging operations data indicated that in FY 2020, a total of 144,323 cubic yards were 

dredged in Oregon Inlet, all with USACE dredges (sidecaster or shallow draft hopper) with a total 

cost of $2.73M.  

 In FY 2021, a total of 142,947 cubic yards were dredged by the USACE, using USACE dredges 

(sidecaster or shallow draft hopper), with a total cost of $2.69M. 

 No material was placed directly on any of the study area beaches as the sidecaster operations 

do not remove material from the inlet system and the shallow draft hopper dredges generally 

place the material as close as possible to the surf zone at the north end of Pea Island. 

Maintenance Expenses 

 Maintenance expenses in 2021 totaled approximately $771,000 with most of the expenses 

related to general sand removal and expenses associated with the November 2021 coastal 

storm.  
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Terminal Groin Monitoring 

The long-term terminal groin monitoring methodology was changed in 2017 to include a new protocol 

for determining the historical and project erosion rates. The historical rate is now determined as a linear 

regression of shoreline positions between October 1968 and October 1988. The project rate is 

determined as a linear regression of shoreline positions between August 1992 and December 2018. 

These new rates are used with the same methodology as previous reports to determine the one mile 

and three mile volume changes. 

 Terminal Groin Monitoring: As of February 1, 2022, the project erosion rates are much less than 

the historical rates in the first three miles of the study area, and the project erosion rate does 

not exceed the historical rate at any point in the first six miles south of the Oregon Inlet terminal 

groin. The one and three mile volume calculations are well below that which would be expected 

using the historical rate. In summary, the construction of the groin does not appear to have 

caused an adverse impact to the shoreline over the six-mile study area. 

Physical and Biological Monitoring 

NCDOT provided physical and biological survey results which are summarized as follows: 

 Physical and Biological Condition of the Beach Sand: Sand sampling was conducted quarterly 

(generally in January, April, July, and October) along 64 transects beginning 0.1 miles south of 

the terminal groin and continuing south every 0.2 miles to the southern terminus of the PINWR. 

Benthic organisms, grain size, slope and compaction, and heavy mineral content were analyzed. 

o Beginning in 2019 data were analyzed with a cubic function rather than a linear 

function. This function indicates an inverse relationship between grain size and species 

abundance.  

o Generally, grain size distributions across the study area were as expected with seasonal 

and long-term variations. The data also indicate that major storms have an influence 

over benthic numbers, but these numbers recover over time. In 2021, storms had little 

to no effects on the survey results. 

o Beginning in 2018, the Canal Zone, New Inlet/Pea Island Breach, and Rodanthe S-Curves 

areas were analyzed separately. The data indicated seasonal and long-term variation 

similar to that of the overall analysis. After analyzing the data from the “trouble spots” 

for 2019-2021, there is a constant strong inverse relationship (5-year cycle) between 

average grain size and average species abundance in the Pea Island Inlet area. There is a 

weak inverse relationship between average grain size and average species abundance in 

the Canal Zone and S-Curves. In the Canal Zone, the average number of species is 

increasing, while in the S-Curves the average number of species is decreasing. A 

decreasing trend in grain size at the Pea Island Inlet zone produced the second highest 

average species abundance since July 2013.  

o The 2021 survey year was the first time since 2014 that the average grain size for all 

three “trouble spots” did not exceed 1.0 mm, resulting in an abundance of benthic 

organisms. 

o New monitoring protocols were established for 2023 and are detailed in Appendix D. 
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1. INTRODUCTION 

In December 2010, the Federal Highway Administration (FHWA) issued a Record of Decision (ROD) for 

TIP Project B-2500, which includes the replacement of the Bonner Bridge and a long-term solution for 

NC 12 between Oregon Inlet and Rodanthe. The Selected Alternative for Project B-2500 is the Parallel 

Bridge Corridor with NC 12 Transportation Management Plan (NC 12 TMP). As explained in the ROD, a 

component of the NC 12 TMP is a detailed coastal monitoring program that is designed to assist the 

agencies in deciding when the planning efforts for future phases of the Project B-2500 should begin. The 

coastal monitoring program includes detailed annual monitoring reports that summarize data collected 

by the N.C. Department of Transportation (NCDOT) and other agencies. 

The study area for the coastal monitoring program includes both the study area of the existing terminal 

groin monitoring program (developed in conjunction with the U.S. Fish and Wildlife Service [USFWS], per 

the permit issued in June 1989) and the TIP Project B-2500 study area. The coastal monitoring program 

study area begins just over five miles north of the Oregon Inlet Marina and extends approximately 13 

miles south of Oregon Inlet to the community of Rodanthe. The highway vulnerability analyses focus on 

the section of NC 12 between Transect 170 (Old Coast Guard Station, mile 0) and Transect 632 in the 

northern part of Rodanthe (mile 13.1). The study area includes the entire width of Hatteras Island 

between the ocean and estuarine (soundside) shorelines. 

In August 2012, a new easement (permit) for the terminal groin monitoring was signed. The results of 

the terminal groin monitoring required as a condition of the 2012 easement are included in the annual 

coastal monitoring report. Any updates or changes in the terminal groin analysis methodology have 

been developed in consultation with the U.S. Fish and Wildlife Service (USFWS) and are described in this 

report.  

The present report describes the data collection and analysis completed to update the conditions during 

the calendar year 2021. Conditions throughout the year are compared to the conditions reported in the 

2020 Update Report, herein referred to as the 2020 report. General comparison of current erosion rates 

and composite vulnerability to baseline conditions (established in the Baseline Report, conditions as of 

January 14, 2011) are also presented. The erosion rates for the area have been updated with new 

shoreline position data through February 1, 2022. In addition, all assessments performed under the new 

terminal groin easement have been updated through February 1, 2022. This date in 2022 was used 

because there was no flight in December 2021, with the last flight in 2021 taking place on September 30, 

2021. 

The reports generated in conjunction with the NC 12 TMP coastal monitoring program are intended to 

meet the requirements for both TIP Project B-2500 and the easement issued in 2012 for the retention of 

the Oregon Inlet terminal groin.  

2. DATA COLLECTION AND METHODOLOGY 

The key parameters used for monitoring of the extended Oregon Inlet study area are: 

 Ocean shoreline location; 

 Estuarine shoreline location; 
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 Distance from ocean to estuarine shoreline; 

 Island elevation; 

 Dune crest location and elevation; 

 Beach volume above mean high water, between eastern edge of pavement and ocean shoreline; 

 Dune vegetation coverage; 

 Land cover/habitat mapping (first presented in the 2017 update); and  

 Erosion rate and road vulnerability. 

The data used for this update is detailed in Table 1. Figure 1 shows the extent of the coastal monitoring 

program transects, and Table 2 lists the location of the transects corresponding to various landmarks 

along the study area. Transects 0 to 381 were the original transects established for purposes of 

monitoring the Oregon Inlet terminal groin. Transects are spaced 150 ft apart. 

In August 2011, NCDOT implemented a new orthophotography flight schedule (in agreement with the 

USFWS),  replacing the former terminal groin flight schedule (six times annually) with a new schedule 

that includes flights of the entire B-2500 study area four times annually (February, April, August, and 

October). The new photography is obtained at a flight altitude of 4500 ft Above Mean Ground Level 

(AMGL) and ground controlled in order to achieve +/- 0.5 ft accuracy (pers. comm. Rob Allen, NCDOT 

July 15, 2013). NCDOT generates topographic data from these lower elevation orthophotos. In June and 

December, NCDOT continues to fly the entirety of Hatteras and Ocracoke Islands, including the B-2500 

study area, at 7500 ft AMGL but does not generate topographic data from these photos. Orthophotos 

from all six flight dates are used for shoreline delineation (oceanfront and soundside) and are used in 

the analysis of shoreline change. Parameters requiring elevation data (dune crest elevation, for 

example) are evaluated only at the February, April, August and October dates. Since 2013, color infrared 

(CIR) photography has been provided once per year (generally in April) to assist with identification of 

vegetation density and habitat classification. 

 

Table 1. Orthophotos and topographic data used for 2021 monitoring update. 

Date of 
Orthophotography 

Topographic 
Data 

Available 
Data Source Notes 

2/6/2021 Yes NCDOT  

4/16/2021 Yes NCDOT CIR photographic data also 
provided 

6/18/2021 No NCDOT  

8/12/2021 Yes NCDOT  

9/30/2021 Yes NCDOT  

2/1/2022 Yes NCDOT This date used for the 2021 report 
because there was no flight in 

December 2021 



 
3 

 

Figure 1. Coastal monitoring program with study area transect extents. 
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Table 2. Study area landmarks and corresponding transect numbers. 

Transect 
Number 

Miles from 
Transect 170 

Location Description 

-67 -6.7 Northernmost transect of study area (Bodie Island) 

-35 -5.8 South Old Oregon Inlet Road 

89 -2.3 Oregon Inlet Marina 

150 -0.5 Bonner Bridge Navigation Zone - Midpoint 

156 -0.4 Tip of Terminal Groin 

170 0 Old Coast Guard Station 

254 2.4 Northernmost Dike of Ponds 

307 3.9 Pea Island National Wildlife Refuge Visitor Center 

378 5.9 Southernmost Dike of Ponds 

399 6.5 Oceanside Refuge parking lot 

410 6.8 Soundside Refuge parking lot 

578 11.6 Southernmost boundary of Refuge 

604 12.3 Rodanthe Ferry Terminal 

632 13.1 Southernmost transect of study area (Rodanthe Pier) 

 

As detailed in the following sections, additional data on NCDOT roadway maintenance activities, other 

projects in the study area, and data from other federal and state agencies were also used in this 

analysis. Physical and biological monitoring has been conducted by NCDOT. Appendix A includes this 

monitoring of the conditions of the beach sand. Appendix B shows the regions of controlled burns 

undertaken in 2021 within the PINWR and was provided by USFWS.. Appendix C includes published 

papers that were completed as part of this research effort. Appendix D presents revisions to the physical 

and biological monitoring protocols that will be implemented in 2023. 

The methodology used to analyze the data collected is described in the following sections. Detailed 

monitoring of the barrier island morphology is being undertaken along with examination and 

exploration of indicators of current and future vulnerability of the road. 

Ocean and Estuarine Shorelines 

The ocean shoreline was digitized for each of the six full study area orthophoto dates (Table 1). The 

shoreline is represented as the visible wet-dry line for sandy beaches (primarily on the ocean side), and 

the limit of the marsh vegetation is used to represent the estuarine shoreline (where the estuarine 

shoreline is sandy, the wet-dry line is used). Estuarine shorelines were updated for each date using the 

previous estuarine shorelines as a starting point. The estuarine shoreline has not been observed to 

change significantly over the two-month intervals between photo dates, with the exception of the areas 

closest to the Pea Island Breach and just south of the new Basnight (Oregon Inlet) Bridge. Because of the 

limited extent of changes in the estuarine shoreline, it is determined for each date using the following 

methodology:  

 The previous shoreline (2 months prior) is displayed on the current orthophoto. (For example, 

the December estuarine shoreline is generally displayed on the February orthophoto.)  
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 Visual inspection of the digitized shoreline relative to the photo identifiable shoreline is made at 

a scale of 1:1200, and the digitized shoreline is corrected to the most recent orthophoto as 

required.  

The methodology for determining the ocean shoreline is as follows:  

 The ocean shoreline is digitized directly from the orthophoto for each date (without comparison 

with previous shorelines). It is identified as the visible wet-dry line (location where a noticeable 

darker line of saturated sand is observed). The wet-dry line (also known as the high water line) is 

used because it has a smaller horizontal displacement than the swash terminus, thus it is more 

suitable for long-term shoreline change analysis (Dolan et al. 1980). 

 Visual inspection of the image at a scale of 1:1200 is made and the wet-dry line is manually 

digitized and reviewed.  

The distance from the ocean shoreline to the estuarine shoreline was evaluated at each transect for the 

February 6, April 16, June 18, August 12, and September 30, 2021 orthophotography as well as the 

February 1, 2022 orthophotos. Exclusively interior channels and ponds were not considered to be a part 

of the estuarine shoreline for this analysis. In some cases, the island extended past the first intersection 

with the estuarine shoreline. In these cases, the distance to the first intersection was used. 

As described in the 2011 report, the original study methodology included identifying the smallest 10% of 

the distances from ocean to estuarine shoreline (in the baseline report); this methodology has changed 

to an assessment of the locations where that distance was smaller than 1000 ft (in all subsequent 

reports). Island width is considered to be a vulnerability indicator for island breaching, and 1000 ft was 

selected based on the island widths at the locations of breaches caused by Hurricane Irene in August 

2011. In the present report a width of 1000 ft is used to assess breaching vulnerability. 

 

Island Elevation and Dune Morphology 

Photogrammetrically derived digital terrain models from the February 6, April 16, August 12 and 

September 30, 2021 flights were used to evaluate island elevation and dune morphology. The digital 

terrain models include spot elevations, breaklines, and contours provided by NCDOT. These are 

imported into ArcGIS for further analysis. Island elevation values were extracted across each transect for 

each date at each transect using GIS tools.  

 

Dune Crest/Maximum Elevation between NC 12 and Ocean Shoreline 

A profile-based assessment of the maximum elevation between the eastern edge of pavement of NC 12 

and the ocean shoreline was performed. The maximum elevation is then used to evaluate the potential 

vulnerability to wave action and overwash. The maximum elevation between the edge of pavement and 

shoreline is compared with the road elevation at each transect. Where the maximum elevation is less 

than 10 ft above the road, there is considered to be an increase in vulnerability.  
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Dune Toe Position and Elevation 

In addition to the evaluation of maximum elevation between the road and the shoreline, identification 

of the dune toe position and elevation was conducted and reported for the last topographic data set 

available for the 2021 study year, associated with the September 30, 2021 photography.  

To identify the dune toe, a partially automated algorithm was used. For initial dune toe identification, a 

straight line between the maximum profile elevation and the shoreline was drawn, and the maximum 

difference between this line and the profile elevation was identified as the toe (see Figure 2). However, 

in some cases the automatically extracted toe was either not suitable, or no significant dune was 

present on the profile. This led to the development of an inspection method where the user views the 

profile at each transect, and can either accept or replace the estimated dune toe, or identify a profile as 

having no visible dune feature. For profiles identified as “no dune,” the dune toe elevation and position 

were not reported. 

 

Figure 2. Schematic of dune toe identification methodology. Ocean shoreline is at horizontal position 
zero. 

 

 

Beach Width 

Dune toe identification also allows for assessment of the beach width. For this study, beach width is 

defined as the distance from the dune toe to the ocean shoreline. Beach width is important because for 

wide beaches under typical daily conditions, the dune system is unaffected by wave action and can build 

due to accumulation of wind-blown sand. Under continual erosion, the beach narrows and steepens, 

allowing more frequent impact of waves on the dune face and transitioning to an eroding dune system.  

Distance from ocean shoreline (ft) 
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In this study, beach widths less than 100 ft are considered to contribute to vulnerability of adjacent 

dune fields and therefore to the highway vulnerability. Where beaches are less than 100 ft wide, 

elevated water levels and high waves during typical nor’easter storms can impact the dunes, reducing 

dune volume and height. If these conditions exist in areas where the total distance from edge of 

pavement to shoreline is greater than 230 ft, the narrow beach width and loss of the dune make the 

road increasingly vulnerable to direct wave impact and/or flooding during storm events. 

Beach Volume above MHW from Edge of Pavement to Shoreline 

The digital terrain models from the February 6, April 16, August 12 and September 30, 2021 flights were 

also employed to compute the volume of beach material between the NC 12 edge of pavement (EOP) 

and the ocean shoreline located at the mean high water (MHW) elevation at each transect. Mean high 

water was determined at the center of the study area using the VDATUM tool developed by NOAA 

(NOAA 2012). The MHW elevation was estimated at 1.14 ft NAVD 88. The elevations along each transect 

were extracted from the edge of pavement seaward using GIS tools. Volume above the 1.14 ft contour 

was computed using a Matlab script that functions similarly to the BMAP methodology described in 

previous reports, and is reported as cubic yards per ft alongshore (schematic shown in Figure 3). 

Computed volumes were compared with previously reported values. It is noted that the Edge of 

Pavement (EOP) reference line for the beach volume was adjusted to account for roadway location 

changes as detailed in Appendix B of the 2019 report. These changes affected reported beach volumes 

at Transect 376-404 adjacent to the interim bridge at the Pea Island Breach and Transects 513 to 526 

adjacent to the northern end of the under-construction Rodanthe bridge. 

 

Figure 3. Schematic of unit volume computation. The cross sectional area between the horizontal 
position of the mean high water (MHW) contour and the edge of pavement (EOP) is calculated as 
shown, and then converted to unit volume in cubic yards per ft assuming a 1 ft wide profile.   
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Land Cover/Habitat Mapping 

As part of the requirements of the 2012 easement, work has been ongoing to map and model habitat 

changes within the Pea Island National Wildlife Refuge (PINWR). Initial efforts were undertaken in 

collaboration with representatives of the PINWR to create land cover maps for the years 1998 and 2015, 

based on available color infrared (CIR) photography and were described in the 2017 report. In 2018, this 

effort was expanded and maps were created for each of the years, 2012 to 2018, as described in 

Appendix B of the 2018 report. The land cover/habitat mapping replaces the vegetation analysis 

described in reports prior to 2018, as agreed by representatives of USFWS and NCDOT. The present 

report continues the methods initially described in Appendix B of the 2018 report to map the land 

cover/habitat for the April 16, 2021 color infrared imagery. These methods are described below. 

The CIR image was resampled to a 2 ft (0.6 m) resolution. This value was chosen to speed up 

computational times in ArcGIS, while maintaining enough resolution to differentiate all habitat classes. 

The resampled image was clipped using the polygon formed by the south end of the PINWR and the 

estuarine and oceanfront shorelines.  

Thirteen habitat classes were identified as the main habitats that could be classified from the CIR 

imagery. These classes were selected in collaboration with personnel from the U.S. Fish and Wildlife 

Service (USFWS) and are based on the habitat types listed on the PINWR website 

<http://www.fws.gov/refuge/pea_island/wildlife_and_habitat/habitat_types.html>. The 13 classes are 

listed with their descriptions in Table 3.  

Habitat classification was completed in ArcGIS using interactive supervised classification based on 

training polygons digitized over spatially varying locations that represent each habitat class. This method 

allows for a fast cell-by-cell raster classification based on classes defined by the user. Habitat classes 

such as Bare Sand, Estuarine Pond, Salt Flat, Shrub, Marsh, and Water are automatically classified using 

this method.  

Seaward of the NC 12 Highway, classification is partially based on the supervised classification and 

morphological features digitized as polygons. The Beach is the region within the oceanfront shoreline 

and the dune toe. For habitat classification purposes, the horizontal extent of the dunes is defined based 

on elevation data and transects separated every 150 ft. The dune field is the polygon defined by the 

dune toe line, the dune heel line and the southern end of the refuge. The location of the dune heel is 

the defined by the 5 ft contour or the eastern edge of pavement, whichever is seaward (Figure 4). The 5 

ft contour was chosen as the landward edge of the dune because it partially matches the edge of NC 12 

highway in the northern portion of the island, and because it provides an objective metric for 

comparison between different dates. The location of the dune toe depends on the dune crest and the 

shoreline position at each transect. The dune toe is extracted based on the maximum vertical distance 

between the beach profile and the line traced between the dune crest and the shoreline (Figure 4).  

  

http://www.fws.gov/refuge/pea_island/wildlife_and_habitat/habitat_types.html
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Table 3. Definition of Habitat Classes  

Value Class Description 

1 Bare Sand (BS) Bare sand excluding the foredune and beach areas. Bare sand includes overwash fans 
and unvegetated portions of the island covered with dry sand.  

2 Estuarine Pond 
(EP) 

Enclosed bodies of water within the island with minimum or no connection with 
estuarine water. This class does not include the three large manmade managed water 
ponds of the refuge.  

3 Salt Flat (SF) Estuarine areas subjected to irregular flooding by salt water. This class occurs in 
shallow depressions where evaporation of the high salinity ocean water concentrates 
salt. Sparse cover and low diversity characterize its plant density and species 
composition. 

4 Shrub (S) Shrubs occur in a wide range of conditions from excessively to poorly drained soils in 
areas protected from salt spray and flooding by salt water. These conditions may occur 
on stabilized sand ridges, in dune swales, and on sand flats. 

5 Marsh (M) Includes salt and emerging marshes. Salt Marsh occurs on the margins of estuarine 
channels and on the landward side of barrier island systems in areas under tidal 
influence. The brackish marsh occurs along the margins of sounds and estuaries in 
areas not subjected to regular flooding by salt water. Brackish marsh is subjected to 
irregular flooding mostly from wind tides. 

6 Vegetated 
Dune (VD) 

Vegetated dune occurs in the landward side of the dune. This habitat is exposed to salt 
spray and abrasive wind-blown sand. 

7 Bare Sand 
Dune (BSD) 

Un-vegetated portion of dunes limited on the ocean front by the dune toe and 
landward by the 5 ft (1.524 m) NAVD88 elevation contour or the eastern edge of 
pavement, whichever is seaward. 

8 Water (W) Estuarine and ocean water. 

9 Groin (G) Terminal groin as visible from aerial imagery. 

10 Infrastructure 
(I) 

Paved roads, parking lots, construction sites, and buildings. 

11 Maritime 
Brush (MB) 

Growing vegetation in overwash terraces behind dunes and below the 5 ft (1.524 m) 
NAVD88 elevation contour in areas subject to inundation by the ocean or partial burial 
due to wind-blown sand. 

12 Managed 
Wetlands 
(MW) 

Manmade impoundments with borrow canals around the perimeter that may include 
open water, moist soil, exposed sand/mud flats, and emergent vegetation with varying 
amounts and management regimes. Pea Island National Wildlife Refuge has three 
impoundments: 390-acre North Pond, 192-acre New Field Pond, and 208-acre South Pond. 

13 Beach (B) Bare sand between the dune toe and the wet-dry shoreline.  
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Figure 4. Definition of the horizontal extent of a dune (red arrow) on a cross-shore transect and 
visualization of the dune toe extraction method.  

The dune is classified as Bare Sand Dune and Vegetated Dune depending on whether it is vegetated or 

not. Vegetated areas between the landward edge of the dune and NC 12 Highway are classified as 

Maritime Brush, excluding Shrubs. Other areas classified as Maritime Brush were digitized over the 

portion of overwash fans that have growing vegetation. Other classes that were digitized include the 

Infrastructure, Groin, and Managed Wetlands. 

Once the automated and digitized classifications are completed, visual inspection of the resulting 

habitat maps is performed at 1:3,000 scale that allows correction of noise and any mis-classifications 

that may have resulted from the automated process. Feedback is also obtained from USFWS regarding 

the classifications, with edits made based on this feedback. 

Erosion Rate Update 

The project included an update of study area erosion rates following the methodology of Overton and 

Fisher (2005). To update the erosion rates, additional ocean shoreline position data were established 

using the aerial orthophotography for the 2021 dates (and February 2022), and added to the database 

of shoreline positions established in the 2010 Baseline Report (Overton 2012) and updated in 

subsequent reports. The erosion or accretion rates were then calculated by performing a linear 

regression on the shoreline position data. It is noted that for the transects surrounding the Pea Island 

Breach (Transects 386, 387, 388, 389, and 390), shoreline positions while the breach was active have 

been removed from the database, as described in the 2015 Report. Since the 2016 update, post-closure 

shorelines for those transects have been included in the database, and computation of erosion rates for 

these transects has resumed. 

Critical Buffer and Vulnerability: Present and Future 

The vulnerability of the NC 12 roadway at the conclusion of 2021 was assessed using the February 1, 

2022 orthophotography because there was no imagery available for December 2021. Vulnerable 

locations were identified using the 230-foot critical buffer established in previous studies1. Where the 

                                                           
1 This criterion originated with the first highway vulnerability study completed in 1991 (Stone, Overton and Fisher 
1991). That work proposed a critical buffer distance of 230 ft from the edge of pavement to the active shoreline, 
interpreted as mean high water (MHW), to be used to indicate when a coastal highway became vulnerable to 
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distance from the edge of pavement to the ocean shoreline was less than or equal to 230 ft, the area 

was considered to be vulnerable. In previous reports, the four transects within the original Pea Island 

Breach (and the associated temporary bridge) were excluded from the vulnerability analysis. NCDOT 

completed construction of a 0.5-mile interim structure spanning the breach area in late 2017. Because 

the new structure is not intended as a long-term solution for the maintenance of NC 12, this analysis will 

continue to assess the distance between the edge of pavement (bridge) and the ocean shoreline within 

the interim bridge area. 

Areas where the shoreline would be expected to recede to the buffer zone within 5 years (based on the 

updated shoreline position data) were also highlighted. This was done by predicting the expected 

position of the shoreline in 5 years and highlighting areas where it encroached on the 230-foot critical 

buffer. The newly computed erosion rate (the linear regression of the cumulative set of shoreline 

positions) was used to project the shoreline position 5 years into the future and in 10-year intervals 

from 2030 to 2060. By computing the predicted position in this way, bias toward under-predicting or 

over-predicting erosion based on the current position is avoided, and all historic positions in the 

database are incorporated. 

To provide an estimate of the range of potential shoreline positions, the concept of prediction interval 

was used to determine the uncertainty surrounding the expected shoreline positions for the 2030, 2040, 

2050, and 2060 predictions. A prediction interval is an estimate of a range in which future observations 

will fall, with a certain probability, given what has already been observed. The landward-most shoreline 

position in the 95% confidence interval range is considered a proxy for the potential “high-erosion” 

shoreline position, while the seaward-most position provides an estimate of the “low-erosion” case. This 

band of expected positions was compared with the 230-foot critical buffer to assess the potential future 

vulnerability of NC 12.  

Storm Events 

The USACE Field Research Facility (FRF), located in Duck, NC (approximately 35 miles north of the study 

area) maintains a variety of wave and water level measurements. The FRF defines a storm as a 

maximum wave height of greater than 2 m (6.6 ft) for a sustained duration greater than 8 hours. (Note: 

The wave height measured at the FRF, Hmo, is an energy-based statistic equal to four times the 

standard deviation of the sea surface elevations.) Storm events for 2021 were extracted using this 

criterion for the 17m waverider buoy at the FRF. In addition, the peak water level during each storm and 

the maximum difference between the NOAA predicted and observed water levels during the storm were 

compiled for the water level gage at the FRF.  

Recently the data from the Traveler Information Management System (TIMS) for Dare County were 

made available to the CMP researchers. These data were also compiled to provide information on 

storm-related closures or hazardous events along NC 12 during 2021. 

                                                           
repetitive overwash and sand deposits resulting in excessive maintenance costs. This conclusion was based on the 
review of NCDOT maintenance records for NC 12. 
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NCDOT Maintenance 

Information on the road maintenance conducted within the study area was provided by NCDOT, 

including location, type of maintenance, and cost.  

 

Barrier Island Breaches  

Hurricane Irene impacted the study area on August 27, 2011. High winds, waves, and elevated water 

levels on the sound side combined to cause substantial changes to the morphology of the area. In two 

locations, the barrier island was breached: just south of the freshwater ponds and at the north end of 

the community of Rodanthe. These breaches are referred to as the Pea Island Breach and the Rodanthe 

Breach, respectively. The Rodanthe Breach closed shortly after Hurricane Irene in 2011; however, that 

area was also breached during Hurricane Sandy in 2012 as described in the 2012 report. The Pea Island 

Breach had essentially closed by May 2013, nonetheless, later orthophotos have revealed occasional 

flooding at the area. The evolution of these regions was again monitored in 2021.  
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3. RESULTS 

Distance from Ocean to Estuarine Shoreline 

Table 4 shows the location of the transects where the distance from the ocean to estuarine shoreline 

was 1000 ft or less in at least one photography set in 2021. Overall, the locations where island widths 

are less than 1000 ft correspond to areas that have been identified in previous reports. 

Transects 238 to 246 are located just south of the Canal Zone hot spot, adjacent to an interior channel 

north of the freshwater ponds which has a direct outlet to the sound. As noted in previous reports, this 

area can fluctuate in width but remains near the 1000 ft that is considered to be increasingly vulnerable 

to soundside storm surge. 

Transects 408 to 423 are located at an area south of the Pea Island Breach that has remained narrow 

throughout the monitoring period.  

Transects 535 to 576 are located just north of Rodanthe in a location that is persistently narrow, and 

where a beach nourishment project was completed from late July to early September 2014 (a project 

overview is provided in the 2014 report). The beach nourishment project increased island widths in the 

area temporarily, but have returned to pre-project conditions and were less than 1000 ft wide during 

most of 2021. This area will be bypassed by the Rodanthe Bridge, which was recently opened to traffic 

on July 28, 2022.  

To illustrate the conditions of the full study area shoreline at the conclusion of the 2021 study year, the 

island width as of February 1, 2022 is shown in Figure 5. This figure illustrates the distance from the 

ocean to estuarine shoreline at each individual transect for this date; transects with island widths less 

than 1000 ft are highlighted in red. Figure 6 through Figure 11 present the locations of the island width 

transects on the aerial photography.  
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Table 4. Transects with distance from ocean to estuarine shoreline less than 1000 ft at least once in 
2021. Distances less than 1000 ft are highlighted in bold.  
 

Transect  Location 2/6/2021 4/16/2021 6/18/2021 8/12/2021 9/30/2021 2/1/2022 

238 
Between 
Old Coast 

Guard 
Station and 
Freshwater 

Ponds 

1018 954 971 1022 1005 920 

239 1024 1000 989 1044 1010 935 

244 1021 982 1014 1055 987 1008 

245 1007 938 967 1004 990 997 

246 993 917 927 947 982 976 

408 

Between 
Refuge 

Parking Lots 

734 709 720 790 757 743 

409 703 669 677 732 718 701 

410 679 640 629 687 664 649 

411 797 735 733 788 753 721 

412 770 735 738 780 742 712 

413 722 668 666 707 674 637 

414 741 674 672 692 672 631 

415 912 825 838 859 850 783 

416 1040 948 968 972 953 907 

421 1054 1029 1017 1049 999 980 

422 936 930 934 962 905 887 

423 941 963 951 973 929 909 

535 

 Southern 
PINWR/ 

Rodanthe S-
Curves 

969 940 966 998 964 965 

537 885 870 875 905 909 854 

540 695 652 683 705 670 662 

541 991 905 962 984 928 932 

542 929 867 891 938 888 866 

543 673 601 592 661 631 601 

544 1007 1025 938 1009 979 933 

546 675 673 682 711 675 653 

547 1016 980 1041 1061 1033 997 

548 780 727 807 826 798 761 

549 919 843 906 936 940 898 

575 859 832 847 902 840 855 

576 808 770 783 834 780 781 
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Figure 5. Summary of distance from ocean to estuarine shoreline measurements along the study area 
as of February 1, 2022. Red indicates distances less than 1000 ft. Transect 170 is located 
approximately 0.4 miles south of the tip of the terminal groin. 
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Island Elevation and Dune Morphology 

Dune Crest/Maximum Elevation between NC 12 and Ocean Shoreline  

The maximum elevation between the NC 12 EOP and the ocean shoreline was determined at each 

transect for the 2021 digital terrain models (February 6, April 16, August 12 and September 30, 2021); 

for the purpose of this analysis, the maximum elevation is identified as the dune crest. Changes in the 

maximum elevation from date to date are shown in this section to illustrate the variability. Negative 

change means the elevation of the later date was lower than that of the earlier date (decrease in 

maximum elevation); positive change means that the maximum elevation increased between the two 

dates. Figure 12 illustrates the changes from February 6 to April 12, 2021. The average change in 

maximum elevation over the entire study area during this time frame was approximately 0.7 ft 

(computed using the absolute value of the difference). The largest change was an increase of just under 

5 ft at Transect 214 near mile 1.25. The largest decrease was just over 7 ft at Transect 188 near mile 0.5. 

As in past reports, the majority of the elevation changes were in the Canal Zone area. 

 

Figure 12. Maximum elevation change from February 6, 2021 to April 16, 2021 at each transect, 
displayed from north to south along the study area. Note that transects are spaced 150 ft apart. 
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Changes occurring between April 16 and August 12, 2021 are shown in Figure 13. The average change 

was 0.85 ft (considering the absolute value of the difference). The largest increase was approximately 

2.2 ft near mile 12.3 (Transect 604), and the largest decrease approximately 6 ft near mile 0.85 (Transect 

200). It is noted that the region (Canal Zone) that showed high variability in the February-April time 

period showed an overall decrease during the summer months.  

 

Figure 13. Maximum elevation change from April 16, 2021 to August 12, 2021 at each transect, 
displayed from north to south along the study area. Note that transects are spaced 150 ft apart. 

 

Changes in maximum elevation from August 12 to September 30, 2021 are shown in Figure 14.  This 

time period had the least observed change during the 2021 study year. Average change during this time 

period was 0.2 ft. The largest increase was 1.3 ft at Transect 579 (approximately mile 11.6), and the 

largest decrease was 1.6 ft at approximately mile 1.7 (Transect 228).  
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Figure 14. Maximum elevation change from August 21, 2021 to September 30, 2021 at each transect, 
displayed from north to south along the study area. Note that transects are spaced 150 ft apart.  

The combination of wind-blown and water-borne transport and human intervention on the degraded 

dune field on Pea Island contributes to the high degree of variability observed over the study year, 

which for 2021 was primarily observed in the Canal Zone where high rates of sand transport and earth 

moving operations are frequent. 

To assess the state of the dunes at the final topographic data collection date of the 2021 study year, the 

dune crest heights (or simply the maximum elevation along the profile east of the road where no distinct 

dune was present) along the study area as of September 30, 2021 were plotted (see Figure 15). General 

trends remain the same as those observed in previous reports. The lowest dunes along the study area 

are found in three sections: along the Canal Zone and northern side of the freshwater ponds region, 

adjacent to the Pea Island Breach, and at the south end of the Pea Island National Wildlife Refuge into 

Rodanthe.  
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Peak profile elevations (referenced to NAVD 88) ranged from a minimum of approximately 9 ft at 

Transect 386 adjacent to the Pea Island Breach to a maximum of 43 ft at Transect 482 in a wide dune 

field about 3 miles north of Rodanthe. As shown in Figure 15, there is a high degree of variability in the 

maximum elevation at each transect, due to the non-uniform degradation and buildup of the dune 

system. A 0.5-mile running average is also plotted to illustrate the overall alongshore trend. In the 

northern six miles of the study area, the average elevation of the dunes ranges from approximately 15 

to 25 ft. Just south of the ponds the dunes were removed by the Pea Island Breach in 2011 and are 

gradually recovering. From miles 7 to 10, most dunes were greater than 20 ft in elevation; moving south 

from this area toward Rodanthe, the dune field is substantially degraded. In many parts of this stretch a 

narrow artificial dune was previously constructed over sandbags; these dunes were augmented by a 

beach nourishment project in August-September 2014, although the area has since returned to pre-

project or further eroded conditions. As described in the methodology section, the maximum elevation 

was compared to the elevation of the road at each transect. The trends are similar to those described in 

previous reports. 
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Figure 15. Maximum elevation at each transect, displayed from north to south along the study area 
for the September 30, 2021 topographic data set. Blue points are > 10 ft above the CL elevation, red 
points are <= 10 ft above the CL elevation. Note that transects are spaced 150 ft apart. 

 

Dune Toe Position and Elevation 

Dune toe position and elevation for the September 30, 2021 topographic data were evaluated. Figure 16 

shows the horizontal dune toe position relative to the NC 12 edge of pavement as well as the shoreline 

and maximum dune elevation position. The position of the shoreline and maximum elevation as of 

October 5, 2020 are presented as well, for reference. The position of the dune toe is similar to that in 

2020, as were the general patterns across the study area. Dunes along miles 1 through 4 and south of 

mile 11 have been reconstructed multiple times. It is noted that NCDOT is restricted in where and how 

high the dunes could be constructed due to the location of the current NC 12 highway easement within 

the PINWR. NCDOT was required to stay within its existing easement unless otherwise authorized. This 

is why the dunes in these areas are so close to the roadway.  
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Figure 16. Dune toe, shoreline, and maximum elevation positions as of September 30, 2021, measured 
as distance from the NC 12 edge of pavement, compared with dune toe and shoreline positions as of 
October 5, 2020. 

 

Figure 17 shows the elevation of the dune toe as of September 30, 2021, with the NC 12 centerline 

elevation for comparison as well as the dune toe elevation as of October 5, 2020. The average toe 

elevation along the study area was 8.9 ft NAVD, about half a foot lower than than the average elevation 

of 9.5 ft NAVD as of October 5, 2020. 
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Figure 17. Dune toe elevation as of September 30, 2021, compared with elevation of the NC 12 
centerline and dune toe elevations as of October 5, 2020.  

 

Beach Width 

Beach width, determined as the distance between the dune toe and ocean shoreline, as of September 

30, 2021 is shown in Figure 18, with the beach width as of October 5, 2020 for comparison purposes. As 

discussed in the methodology section, a beach width of less than 100 ft is considered to increase 

vulnerability of the dune field to wave impact. In areas where dunes are already degraded, narrow 

beaches increase the likelihood of further dune erosion and/or overwash. In 2021, 121 transects had 

beach widths less than 100 ft; in 2020, this number was 181. The average beach width across the study 

area as of September 2021 was 150 ft, whereas in October 2020 it was 142 ft, and in October 2019 it 

was 130 ft. The pattern of beach widths as of September 30, 2021 was similar to that from the 2020 

report. At this point in time, seven years after placement, the beach width in the area of the Rodanthe 

beach nourishment project is narrower than pre-project conditions. This was expected as the project 

was designed to mitigate erosion for three years (see the 2014 Report for further details on the project). 
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Figure 18. Beach width as of September 30, 2021 (blue), compared with beach width on October 5, 
2020 (gray).  

Beach Volume above MHW from EOP to Shoreline 

The changes in beach volumes above MHW from October 5, 2020 to September 30, 2021 are presented 

in Figure 19. The volume per unit distance alongshore from the NC 12 EOP to the MHW elevation was 

computed at each transect. The numbers reflect both dune size and the distance from the road to the 

shoreline. Also included on the figure is the comparison between October 1, 2019 to October 5, 2020. 

When the two change rates are compared, it is noted that in several places a loss from 2019 to 2020 is 

mirrored by a gain from 2020 to 2021 or vice versa. The beach volume data inherently reflect variability 

due to storm impacts and recovery. It is noted that as detailed in the 2019 Report, Appendix B, there 

was a change in the edge of pavement reference line for the volume computations in 2019; some of the 

volume changes from 2018 to 2019 were attributed to this reference change. From transects 376 to 404, 

the EOP shifted west, causing an average increase of 3.2 cy/ft in that area, and from transects 513 to 

526, the EOP shifted east, causing an average decrease of 4.6 cy/ft at those transects.  
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Figure 19. Changes in volume from October 2020 to September 2021, measured from the NC 12 EOP 
to the shoreline above the MHW elevation (displayed from north to south along the study area). 
Changes from October 2019 to October 2020 are also shown for reference.  

 

The alongshore profile volumes observed in the region of the beach nourishment project (southern 

PINWR/ northern Rodanthe) from pre-project, post-project, at the end of 2020 and for dates during 

2021 are shown in Figure 20. Volume changes between pre-project and post-project (April 2, 2014 and 

October 9, 2014) were on the order of 20-35 cy/ft increases in the sub-aerial volume alongshore for the 

main part of the project. From October 9, 2014 to February 4, 2015 there were some initial losses on the 

order of 10 cy/ft, after which the volumes remained relatively stable until October 2015 when volumes 

returned to near pre-project levels; this volume loss was thought to be due to the weather conditions 

immediately prior to the October 2015 data collection. By April 10, 2016, the area had recovered an 

average of 17 cy/ft with profile volumes similar to August 2015. From April to August 2016 average 

profile volume had decreased by about 8 cy/ft. In October 2016, the volumes had again decreased to 
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values similar to those in October 2015, likely due to effects of Hurricane Matthew. By February 2017, 

the area had recovered an average of 9 cy/ft, and by April had accumulated another 4 cy/ft on average. 

The profile volume remained relatively stable between April and early September. After the passage of 

Hurricanes Jose and Maria in mid to late September, the area had lost an average of 4 cy/ft as of 

October 2017. The volumes in the area of the beach nourishment project remained relatively stable in 

2018. As of November 2018, about 14 cy/ft on average remained in the study area as compared to the 

April 2014 pre-project conditions. The northern area remained relatively stable in 2019, with additional 

losses observed just north of Rodanthe near Mile 11.5-12. As of October 2019, about 8.6 cy/ft on 

average remained in the study area as compared to the April 2014 pre-project conditions. In 2020, 

profile volumes increased in the northern part of the beach nourishment area, remained relatively 

stable near mile 11.5, and increased slightly towards Rodanthe. As of October 2020, an average of 14.2 

cy/ft more than the April 2014 pre-project conditions remained in the study area. During 2021, the 

northern part of the nourishment area decreased in volume, while the rest of the study area remained 

relatively stable. From mile 11.4 to 12.0 the volume remained similar to pre-project conditions. As of 

September 2021, an average of 11 cy/ft more than the pre-project condition remained in the study area, 

primarily in the northern portion.  

To compare volumetric conditions across the entire study area since the inception of the coastal 

monitoring program, a comparison of total sub-aerial volume change between the edge of pavement 

and the shoreline is shown in Figure 21. Dates of sand placement (2013 dredge material disposal near 

Oregon Inlet and the 2014 beach nourishment project) and significant storms are also indicated. The 

total volume was calculated by multiplying each of the profile volumes by 150 ft (the distance between 

the profiles) and summing the total across transects 170 to 626. Significant events affecting the volumes 

are highlighted by vertical red lines (Hurricane Irene, Hurricane Sandy, the October 2015 “Joaquin-

easter” event, Hurricane Matthew in October 2016, Hurricanes Jose and Maria in September 2017, 

Winter Storm Riley and Hurricane Florence in 2018, Hurricane Dorian in 2019, Hurricane Isaias in 2020, 

and a severe nor’easter in November 2021. As of September 30, 2021, there was an estimated 

approximately 1.3 million cubic yards less volume between the road and the shoreline than there was 

under baseline conditions (January 2011).  
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Figure 20. Profile volume from edge of pavement to shoreline, above the MHW elevation, by transect in region of the beach nourishment project. 
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Figure 21. Total beach volume change (EOP to shoreline) across the study area, with respect to 
baseline conditions.  

 

To assess conditions as of the last available topographic data of 2021, the computed volumes for 

September 30, 2021 are presented in Figure 22 with the running average of dune height included for 

comparison. The minimum measured value was approximately 15 cy/ft at Transect 574 at mile 11.5 

north of Rodanthe. The average volume from the edge of pavement to the shoreline in September 2021 

was approximately 166.5 cy/ft (in 2020 it was 166.2 cy/ft). Low values along the Canal Zone and 

freshwater ponds sections reflect the smaller dunes as well as the proximity of the road to the shoreline. 

From miles 7 to 10 the larger volumes correspond with higher dunes and the position of NC 12, which is 

set back further from the shoreline. In general, the spatial variation in profile volumes are similar to 

those observed in previous reports. 
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Figure 22. Computed volume as of September 30, 2021, from the NC 12 edge of pavement (EOP) to the 
shoreline above the MHW elevation displayed from north to south along the study area. The volume 
follows a trend similar to the running average of the maximum dune crest height, also shown.   
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Land Cover/Habitat Mapping  

Results of the land cover/habitat mapping efforts are presented in this section. Table 5 and Figure 23 

show the total areas in acres each year from 2012 to 2021. Overall, marsh is the dominant habitat in 

PINWR, followed by managed wetlands, shrub, bare sand dune and beach. The variation of total area is, 

for the most part, a consequence of variation in ocean shoreline positions. Figure 24 shows the mapping 

for 2020 and 2021. 

Table 5. Area (acres) for each habitat class from 2012 to 2021 

Class 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 

Bare Sand 154.4 211.8 175.8 181.2 129.9 108.2 140.2 106.5 151.3 133.7 

Estuarine Pond 65.3 70.0 61.7 83.0 77.4 67.8 77.5 81.8 117.9 99.4 

Salt Flat 168.7 232.8 177.1 163.1 169.7 216.4 140.4 93.9 81.2 93.3 

Shrub 534.0 361.6 404.0 388.1 579.1 620.8 403.8 308.2 386.7 472.3 

Marsh 1932.2 2143.0 2123.4 2173.5 1992.4 1979.5 2162.9 2300.1 2094.2 2023.6 

Vegetated Dune 167.4 104.0 141.2 121.3 129.9 136.2 122.3 158.2 146.7 195.2 

Bare Sand Dune 284.9 318.7 277.6 310.9 288.9 284.7 282.2 243.7 250.0 200.8 

Infrastructure 43.0 42.8 42.8 51.4 50.0 56.3 46.8 51.4 53.6 52.4 

Maritime Brush 139.5 97.1 116.7 123.9 129.4 126.9 102.4 122.5 118.3 118.1 

Managed Wetland 792.2 784.6 783.5 781.3 779.7 778.9 781.5 778.8 772.8 767.6 

Beach 264.6 283.1 238.2 279.0 265.2 288.7 280.1 249.0 151.0 236.0 

Groin 4.6 4.6 4.4 4.4 4.2 4.2 4.4 4.3 4.2 4.1 

Total 4550.9 4654.0 4546.5 4660.9 4595.7 4668.6 4544.5 4498.2 4328.1 4396.5 

 

 

Figure 23. Area for each habitat class from 2012 until 2021 
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Figure 24. Habitat maps for 2020 and 2021 

Evolution of habitat classes is highly variable and dependent on physical, biological, and management 

factors. Figure 25 shows linear trends for each habitat class. It should be noted that most habitats do not 

display a linear behavior, however, these trends provide a general idea of whether a given habitat class 

tends to increase or decrease over time. All classes with the exception of estuarine pond and 

infrastructure experienced significant changes between 2012 and 2013; this is a consequence of the 

effects of Hurricane Sandy on the island. Other abrupt changes in bare sand, salt flat, shrub, marsh, and 

maritime brush occurred between 2017 and 2018. The potential cause for the latter changes are three 

storms that impacted the Outer Banks in that period, including Hurricane Jose and Maria in mid and late 

September 2017 and Winter Storm Riley in March 2018, just a few weeks before the CIR image was taken. 



 
37 

Between 2018 and 2019, an increase in marsh was observed in contrast to a decrease in shrub. This is 

attributed to controlled burn management activities in areas with high shrub density. During the April 

2020 imagery, the water levels were elevated due to an ongoing nor’easter, which is reflected in the 

decrease in beach and total island area. Estuarine ponds also increased sharply in 2020 as salt flats 

decreased, at least partly due to the elevated water levels. By 2021, the beach had recovered due to water 

levels being back to normal conditions. Marsh decreased with a corresponding increase in shrub. 

The panel in the bottom left corner of Figure 25 shows the total area of the island computed as the sum 

of all classes different from water. The annual variability in this plot is primarily caused by the variability 

of the ocean shoreline position, which shifts depending on short-term storm impacts (erosion) and 

recovery (accretion) as well as on the water level when the images were taken. The data indicates that in 

the past nine years the area of the island has varied between approximately 4,300 to 4,700 acres. 

However, such variation follows a cyclical pattern that does not confirm gain or loss of the island’s 

horizontal area. The total horizontal area of dunes (vegetated + bare sand dune) has been decreasing over 

time from 450 acres to near 400 acres. The observed behavior of each habitat class from 2012 to 2021 is 

described below:  

 Bare Sand: Overall decreasing trend, significant increase after major ocean-side storms.  

 Estuarine Pond: Highly variable with generally increasing trend. The number of enclosed bodies 

of water and their spatial extent depends on the water levels, rainfall, and the water table when 

the images were taken.  

 Salt Flat: Also highly variable and dependent on water levels. Linear trend indicates a decrease 

over time; much of this is due to vegetation of the emergent salt flats adjacent to the Pea Island 

Breach. 

 Shrub and Marsh: These two classes display an inverse behavior and linear trends for marsh 

indicates slight increase, shrub stable to slight decrease.  

 Dune: Bare sand dune has a decreasing trend. Vegetated dune has a stable linear trend but 

fluctuations are observed. As expected, both classes show a strong sensitivity to ocean-side 

storms.  

 Groin: Changes in groin area are a result of sand deposition over the structure and varying water 

levels. Overall, groin area visible in the photography has remained within 4.1 and 4.6 acres.  

 Infrastructure: Increase from 2012 until 2017 due to the construction of the Basnight Bridge in 

the north and other NC 12 improvements near Pea Island Breach. Although the linear trend 

indicates increase in infrastructure over time, the data point in 2018 reflects less construction 

areas on the island due to completion of two bridge projects. Continued work on the Rodanthe 

bridge slightly increased infrastructure in 2019 and 2020, as the bridge neared completion there 

was a slight decrease in infrastructure in 2021. 

 Maritime Brush: Depicts vegetation growth in overwash fans and the landward side of the dunes. 

Significant decrease after ocean-side storms with recovery generally within a year.  

 Managed Wetlands: Slight decreasing trend. From 2012 to 2021 lost over 20 acres, most of that 

area was lost to overwash fans from ocean-side storms that reached the ponds. 

 Beach: Highly variable and dependent on storm activity and water levels. 2020 data shows a large 

decrease in beach area primarily due to the observed elevated water levels in April 2020. April 

2021 water levels were more normal conditions showing a rebound in beach area. 
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Figure 25. Linear trends for each habitat class. 
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A change matrix was created to identify changes from one habitat class to another from 2020 to 2021 

(Figure 26). (Details of changes between prior years are found in Appendix B of the 2018 report and in the 

body of the 2019 and 2020 reports). Green cells in the diagonal of the matrix indicates the stable areas 

that remained within the same habitat. Warm colors indicate different levels of change with the most 

significant habitat changes (> 50 acres) in red cells.  

The largest changes were from marsh to shrub, shrub to marsh and from water to beach. The shrub to 

marsh and marsh to shrub changes are attributable to succession and some management activities 

(controlled burns which reduce shrub, see Appendix B for burn areas and dates). The beach to water 

changes are attributed to the fact that there was an elevated water level condition in the April 2020 

imagery which resulted in an apparent ‘loss’ of beach (108.86 acres from 2019 to 2020); the April 2021 

imagery then showed a ‘gain’ of 98.35 acres from 2020. Overall from 2019 to 2021, there was a net loss 

of 10.51 acres of beach (converted to water).  

. 
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Figure 26. Habitat changes from 2020 to 2021. Top: Change matrix. Bottom: Spatial distributions of 
the three larger habitat changes enclosed in bold rectangles in the change matrix are shown in red. 
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Erosion Rate Update 

With the recent shoreline position data from 2021 through February 2022 (this date was used because 

there was no December 2021 flight) added, the linear regression long-term shoreline change rates for 

the study area changed very little from the 2020 update conditions, as shown in Figure 27. Note that in 

this figure, “positive” shoreline change rates indicate erosion. In order to see more clearly the trends 

since the Baseline Report (conditions as of January 2011), Figure 28 shows each of the erosion rates 

reported yearly since December 2011. While the rates have not changed significantly year to year, it is 

apparent that there are some trends in the changes. In the first mile, while accretion has been present, 

the rates of accretion have been decreasing. In the Canal Zone, rates of accretion have been 

transitioning to rates of erosion (generally less than 2 ft/year). Over the remainder of the study area, 

trends have remained similar since the Baseline Report, with an average slight decrease in the rates of 

erosion in most areas. An accretionary area near Transect 470 has shifted slightly to the south over the 

past three to four years. 

 

Figure 27. Updated erosion rates through February 1, 2022, compared with 2020 update conditions (as 
of December 10, 2020) and baseline report conditions. 
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Figure 28. Erosion rate changes from December 2011 to February 2022. 

 

Critical Buffer and Vulnerability: Present and Future 

Baseline and 5-Year Vulnerability 

Figure 29 to Figure 34 illustrate the location of the 230-foot buffer offset from the NC 12 edge of 

pavement at the conclusion of the 2021 study year. Because there was no photography in December 

2021, the photography dated February 1, 2022 is used to represent the conditions at the conclusion of 

the 2021 study year. The lengths of NC 12 where the shoreline falls within this buffer or would be 

expected to fall within the buffer within 5 years, using the linear regression predicted average position, 

are highlighted on these maps. The average predicted position is used for the 5-year forecast to provide 

an indication of the areas most likely to be immediately impacted. It is noted that if the 5-year forecast 

from the present report (2026) is compared to 2020 forecast maps from early reports, vulnerable areas 

are substantially longer in the prior 2020 forecast maps than those shown on the current (2021) and 5-

year (2026) vulnerability maps. This is due to the inclusion of the prediction interval bands (i.e., the 

“worst-case” high-erosion shoreline position) on the previous 2020 maps. This essentially shows the 
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uncertainty associated with the shoreline prediction, which makes the potentially vulnerable section 

larger.  

Areas of current and 5-year vulnerability as determined by the 230-foot buffer include a section along 

the Canal Zone, a section in the middle of the freshwater ponds stretch near the PINWR visitors center, 

a narrow region just south of the wide dune field area, and along the shoreline segment just north of 

and into Rodanthe. The lengths of the vulnerable sections shown on the maps are presented in Table 6.  

The section termed A in Table 6 and Figure 29 was identified as vulnerable in the 2020 report, and the 

length of the vulnerable area has increased by 489 ft since that report. Section B identified in Table 6 

and Figure 30 are located along the section of NC 12 near the parking access at the juncture of the 

northernmost and middle ponds (this section corresponds approximately to the section identified as B in 

the 2020 report) with a similar length. Figure 33 shows Sections C, D, and E in another previously 

identified vulnerable area in a narrow section of the island just south of the start of the Rodanthe Bridge 

(construction shown in the figure). Section C in Table 6 and Figure 33 corresponds approximately to 

Section C in the 2020 report. Section D corresponds to Sections D, E , and F of the 2020 report, and 

Section E corresponds to Sections G, H, and I of the 2020 report. The length of this entire stretch has 

increased from 1,063 ft in 2020 to 1,145 ft in 2021. Sections F, G, and H in Table 6 and Figure 34 

correspond with sections J, K, and L in the 2020 report and are located in the S-curves area at the north 

of Rodanthe. The total length of the 5-year and current vulnerable sections of NC 12 at the end of the 

2021 study year was 14,545 ft, compared to 14,104 ft in 2020. Most of the change was due to the 

increases in the vulnerable areas within the Canal Zone. 

Table 6. Current and 5-year vulnerable sections of NC 12 

Map Location 
(refer to Figure 
29-Figure 34) 

 
Designation 

in 2020 
Report 

Vulnerability 
Timeframe 

Length 
(ft) 

Approximate 
Transect Span 

Location 
Description 

A A Current 6,408 200-242 Canal Zone 

B B Current 3,404 294-316 

Adjacent to 
PINWR Visitors 

Center 
(Freshwater 

Ponds) 

C C 5-year 136 541 Narrow area 
north of 

Rodanthe 
D D, E, F Current 637 542-545 

E G,H,I 5-Year 372 546-548 

F J Current 372 563-565 Just north of 
refuge boundary 

into Rodanthe 
(S-Curves) 

G K 5-Year 2,678 566-583 

H L Current 537 583-586 

TOTAL Current 13,127   

TOTAL 5-Year 1,417   

OVERALL TOTAL 14,545   
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Figure 29
(View 1  of 6)

Current and 5-Year NC 12 Vulnerability
Prepared for the North Carolina Department of Transportation

Horizontal Datum: North Carolina State Plane Feet 1983 FIPS 3200
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Figure 30
(View 2  of 6)

Current and 5-Year NC 12 Vulnerability
Prepared for the North Carolina Department of Transportation

Horizontal Datum: North Carolina State Plane Feet 1983 FIPS 3200
Orthophoto Date: February 1, 2022; Map Created: October 6, 2022
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Figure 31
(View 3  of 6)

Current and 5-Year NC 12 Vulnerability
Prepared for the North Carolina Department of Transportation

Horizontal Datum: North Carolina State Plane Feet 1983 FIPS 3200
Orthophoto Date: February 1, 2022; Map Created: October 6, 2022
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Figure 32
(View 4  of 6)

Current and 5-Year NC 12 Vulnerability
Prepared for the North Carolina Department of Transportation

Horizontal Datum: North Carolina State Plane Feet 1983 FIPS 3200
Orthophoto Date: February 1, 2022; Map Created: October 6, 2022
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Figure 33
(View 5  of 6)

Current and 5-Year NC 12 Vulnerability
Prepared for the North Carolina Department of Transportation

Horizontal Datum: North Carolina State Plane Feet 1983 FIPS 3200
Orthophoto Date: February 1, 2022; Map Created: October 6, 2022
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Prepared for the North Carolina Department of Transportation
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Predicted Shoreline Positions: 2030 and 2060 

Figure 35 through Figure 40 show the prediction of the expected average shoreline position in 2030 

(referred to as “Predicted 2030 Shoreline” in the figures) based on the linear regression of shoreline 

position including data through February 1, 2022. For these predictions, a band showing the potential 

high-erosion and low-erosion position of the shoreline is also presented, determined using the 95% 

confidence prediction intervals for the position data (this band is referred to as “95% Prediction Interval 

Range” in the figures). Red highlights the areas along NC 12 where, at a minimum, the high-erosion 

shoreline (the western edge of the band) encroaches on the 230 ft critical buffer. These areas are 

considered to be potentially vulnerable roadway. The length and approximate transect span of these 

locations is summarized in Table 7.  

By 2030, the average shoreline position (represented by the mid-point of the band) reaches the 230-foot 

critical buffer throughout the Canal Zone near Oregon Inlet (Figure 35), north of the freshwater ponds. 

[It is noted that a portion of this area is already showing vulnerability in the current year making this an 

area of immediate concern.] The average 2030 shoreline position again reaches the buffer near the 

center of the freshwater ponds near the Visitor’s Center, while the high-erosion shoreline falls within 

the buffer north of this area along North Pond (Figure 36). Figure 37 shows the 2030 high-erosion 

shoreline encroaching on the buffer along the southernmost freshwater pond and adjacent to the Pea 

Island Breach. It is also within the buffer along a small section south of the breach (Figure 38). The 2030 

high-erosion shoreline is well within the critical buffer zone and encroaches onto the road along the S-

Curves section of NC 12 north of Rodanthe and into the northern section of Rodanthe, as shown in 

Figure 39 and Figure 40.  

The potentially vulnerable sections in the 2030 prediction were similar overall to those in previous 

reports, with small differences from the 2020 report. Sections A and B were slightly longer than the 

corresponding sections in the 2020 report. Sections C and D correspond to Section C in the 2020 report 

and are discontinuous with a smaller total length, and a slightly smaller length of the interim bridge span 

was identified as potentially vulnerable in the 2021 report when compared to the 2020 report. The total 

length of potentially vulnerable roadway with the 2030 forecast is 26,736 ft, compared with 27,169 ft in 

the 2020 report. Note that a portion of the length of the Interim Bridge span is included in this estimate, 

because this bridge is considered a temporary solution to the vulnerability in that area.   
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Table 7. 2030 potentially vulnerable sections of NC 12 

Map Location 
(refer to Figure 
35-Figure 40) 

Designation 
in 2020 
Report 

Length (ft) 
Approximate 
Transect Span 

Location 
Description 

A A 8,347 196-250 Canal Zone 

B B 6,048 278-318 

North of, 
Adjacent to, and 

South of Pea 
Island Visitors 

Center 
(Freshwater 

Ponds)  

C C 903 359-364 
Adjacent to 

South Pond and 
just north of Pea 

Island Breach 
D C 1,994 367-379 

Interim Bridge Interim Bridge 400 380-382 
Portion of 

Interim Bridge 
Span 

E D 224 403-404 
Small section 
south of the 

Interim Bridge 

F E 8,822 535-593 

Narrow area 
north of 

Rodanthe, past 
refuge boundary 

into Rodanthe 
(S-Curves) 

TOTAL 26,736   
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2030 Projected Shoreline and 95% PI
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The prediction of the expected average shoreline position in 2060 (referred to as “Predicted 2060 

Shoreline”), along with a band showing the potential high-erosion and low-erosion shoreline positions 

(referred to as “95% Prediction Interval Bounds”) is presented in Figure 42 through Figure 47. The length 

and approximate transect span of the areas where the band encroaches on the 230 ft buffer is 

summarized in Table 8. 

As shown in Figure 42, the 2060 average shoreline reaches the critical buffer along a stretch of NC 12 

just south of Oregon Inlet. This area is currently showing very slight accretion in the long-term rates (see 

Figure 27); therefore Area A in this figure is slightly smaller than Area A (along the same stretch of 

roadway) shown in Figure 35. In the shadow of the terminal groin and north of the ebb shoal bar 

attachment point, the shoreline is essentially stabilized, fluctuating around an average position with 

cyclic periods of erosion and accretion. This cyclic fluctuating shoreline behavior is a function of the 

presence of the terminal groin that traps sand, the ebb shoal bar which tends to refract the waves and 

reverse the direction of alongshore transport (to the north) and the occasionally episodic supply of sand 

provided by the dredge disposal activities of the USACE. Figure 41 shows the approximate location of 

the ebb shoal bar, and provides an example of a period of sediment transport to the north such that 

sand accumulated on the inlet side of the terminal groin. A linear analysis of these kinds of data typically 

results in a small shoreline change rate (either erosion or accretion) and a large prediction interval 

reflecting the uncertainty of the trend. In this area at the present time, accretion is indicated by the 

linear regression analysis. It is noted that there is a limit to how much accretion will be maintained 

before the shoreline position oscillates back to an erosion condition. Future monitoring will determine if 

the shoreline change rate reverses trend in the future, and subsequent shoreline position predictions 

will be adjusted accordingly.  

Along the freshwater ponds and adjacent to the Pea Island Breach, even the low-erosion 2060 shoreline 

moves landward of NC 12 in some areas and most of the roadway adjacent to the ponds is identified as 

potentially vulnerable (Figure 43 and Figure 44). Just south of the ponds, the low-erosion 2060 shoreline 

is within the critical buffer area, and the average-erosion shoreline approaches the road (Figure 45). 

South of that section, all predicted shorelines lie east of the buffer for approximately three miles until a 

narrow section north of Rodanthe (and just south of the under-construction Rodanthe Bridge) where 

the high erosion predicted shoreline transitions to a position landward of NC 12 (Figure 46). All 

predicted shorelines are landward of the road from that area south to the northernmost portion of 

Rodanthe (Figure 47), just north of the roundabout where the Rodanthe Bridge ties into the existing NC 

12 roadway. 

The total length of potentially vulnerable roadway for the 2060 prediction is 40,655, slightly longer than 

the total length of potentially vulnerable roadway for the 2060 prediction in the 2020 report, 39,657 ft. 

Note that the length of the Interim Bridge span is included in this estimate, because this bridge is 

considered a temporary solution to the vulnerability in that area. 
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Table 8. 2060 potentially vulnerable sections of NC 12 

Map Location 
(refer to 

Figure 42-
Figure 47) 

Approximate 
Corresponding 

Section in 
2030 Maps 
(Figure 35-
Figure 40) 

Designation 
in 2020 
Report 

Length (ft) 
Approximate 
Transect Span 

Location 
Description 

A A A 8,255 196-250 Canal Zone 

B B B 10,392 262-330 

North of, Adjacent 
to, and South of Pea 

Island Visitors 
Center (Freshwater 

Ponds) 

C C, D C 5,021 347-379 
Adjacent to South 
Pond to north of 

Interim Bridge 

Interim Bridge Interim Bridge 
Interim 
Bridge 

3,205 380-400 
Span of Interim 

Bridge 

D E D 3,740 401-425 
South of Interim 

Bridge 

E F E 10,041 533-598 

Narrow area north 
of Rodanthe, past 
refuge boundary 

into Rodanthe 
 (S-Curves) 

TOTAL 40,655   

 

 

 



 
60 

 

Figure 41. Diagram showing approximate location of the ebb shoal bar (visible due to waves breaking 
over the shallower areas of the bar) and local reversal of sediment transport, leading to sand 
deposition on the inlet side of the terminal groin. 
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Storm Events 

Table 9 presents the storm events compiled from the USACE Duck Field Research Facility for the 

calendar year 2021. The maximum water level was the maximum elevation measured over the storm 

time frame from the hourly data. Maximum storm surge was the maximum of the difference between 

the observed and predicted water levels. Table 10 shows dates when NC 12 on Pea Island was hazardous 

or closed according to the NCDOT Traveler Information Management System. There was a relatively 

quiet tropical season during 2021, but several coastal storms led to impacts and closures. The most 

extensive closures documented in 2021 were November 7 to 9 due to a strong coastal storm, according 

to the NCDOT Traveler Information Management System.   

 

Table 9. Storm events, 2021, as measured at the Duck Field Research Facility 17 m waverider (waves) 
and pier (water levels) (events had a maximum wave height greater than 6.6 ft for a sustained 

duration greater than 8 hours.) Date and time shown in EST. 

Start Date End Date Max Hmo (ft) 
Duration 

(hr) 

Max Water 
Level 

(ft NAVD) 

Max 
Storm 

Surge (ft) 

1/28/2021 9:26 1/29/2021 2:26 9.3 17.0 3.4 2.4 

2/12/2021 3:56 2/12/2021 16:26 9.1 12.5 3.1 1.7 

2/13/2021 6:56 2/13/2021 17:56 7.4 11.0 2.6 1.6 

2/15/2021 3:26 2/15/2021 13:56 7.5 10.5 2.3 2.0 

3/19/2021 10:26 3/21/2021 5:56 12.3 43.5 3.0 2.7 

10/10/2021 0:56 10/11/2021 19:56 11.0 43.0 4.2 2.2 

10/29/2021 7:56 10/29/2021 21:26 8.5 13.5 3.0 2.2 

11/6/2021 5:26 11/9/2021 2:56 13.1 69.5 4.4 2.4 

11/23/2021 0:56 11/23/2021 15:56 8.9 15.0 2.9 1.6 

  

 

Figure 48. Coastal storm impacts north 
of Rodanthe, November 8, 2021 (Photo 
NCDOT NC 12 Twitter). 
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Table 10. Traveler Information Management System NC 12 closure data for 2021, Pea Island  

StartTime 
(EST) 

EndTime 
(EST) 

City Condition Reason 

2/15/2021 
10:54:00 AM 

2/24/2021 
3:00:00 PM 

Rodanthe 
Lanes 

Narrowed 

Maintenance is performing routine maintenance to the 
NC12 protective dunes in the Mirlo S-Curve area. One 

lane may be closed for short periods. 

8/5/2021 
9:05:00 AM 

8/9/2021 
10:05:00 AM 

Near 
Rodanthe 

Lanes 
Narrowed 

Standing water remains on portions of NC12 from 
south of the Basnight Bridge to Hatteras. Areas 

impacted include Pea Island, Rodanthe, Waves, Salvo, 
and Ocracoke Island. N.C. 12 is passable, but motorists 

should slow down and use caution in areas where there 
is standing water.  

10/29/2021 
8:41:00 PM 

10/30/2021 
10:00:00 AM 

Near 
Wanchese 

Congestion 
There is standing water from the Oregon Inlet Bridge to 

Hatteras Island. Motorists are advised to use caution 
when traveling through the area. 

11/7/2021 
9:21:00 AM 

11/9/2021 
1:00:00 PM 

Rodanthe Road Closed 

Officials plan to reopen N.C. 12 between Marc Basnight 
Bridge and Rodanthe at 1 p.m. after N.C. Department 

of Transportation crews were able to clear much of the 
sand covering the Outer Banks highway.N.C. 12 was 

closed just after high tide at 9 a.m. Sunday and 
remained closed the past few days as heavy winds and 

ocean overwash from a coastal storm made the 
highway unsafe for travel on Hatteras Island. 

Drivers should use caution on N.C. 12 as standing water 
and sand are still present on parts of the road. 

11/11/2021 
9:21:00 AM 

11/13/2021 
10:21:00 PM 

Rodanthe Lane Closed 

NCDOT crews are repairing the protective dunes just 
north of the Village of Rodanthe. One lane will be 

closed for this operation follow temporary traffic signs 
and watch out for moving equipment and maintenance 

workers in the area. 

11/19/2021 
7:25:00 AM 

11/23/2021 
5:00:00 PM 

Rodanthe Lane Closed 
One Lane Closed for Alternating Traffic for Dune 
Reconstruction. Watch for Flaggers and Pilot Car 

February: Coastal storms in late January and early February led to need for dune maintenance. 
August: Standing rainwater. 
October: Rain and soundside flooding (reference NCDOT NC12 Twitter 10/29/2021). 
November: Coastal storm November 6-9 and subsequent dune restoration. 

 

USACE Dredge and Disposal Records 

The USACE has historically dredged and placed material within the project monitoring area on a near-

annual basis as described in the baseline report. However, in recent years dredging and placement 

events have been sparse. Data are gathered from the USACE Navigation Data Center databases 

(https://www.iwr.usace.army.mil/About/Technical-Centers/NDC-Navigation-and-Civil-Works-Decision-

Support/NDC-Dredges/). Because the data sets were not available at the time of the 2020 update due to 
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changes in the USACE web file structure, dredging information for both Fiscal Year 2020 and Fiscal Year 

2021 are included in the present report (Table 11). There were no private contract dredging operations 

in Oregon Inlet during either of these fiscal years, with the USACE conducting all of the operations using 

the dredges Currituck (special purpose small hopper dredge), Merritt (sidecaster), and Murden (special 

purpose small hopper dredge). The amounts dredged were relatively small with totals of 144,323 cubic 

yards in FY2020 and 142,947 cubic yards in FY2021 (for comparison, beach nourishment in Buxton 

completed in August 2022 placed 1.2 million cubic yards of sand over 2.9 miles of shoreline). The 

sidecaster operations do not remove material from the inlet system and the small hopper dredges 

generally place dredged material as close as possible to the surf zone at the north end of Pea Island.  

 

Table 11. Dredging in the vicinity of Oregon Inlet in Fiscal Years 2020 and 2021. 

DREDGE 
NAME 

FY JOB NAME 
START 
DATE 

STOP 
DATE 

ACTUAL CUBIC 
YDs 

ACTUAL 
COST 

CURRITUCK 2020 OREGON INLET, NC 10/9/2019 10/17/2019 4,360 $156,000.00 

CURRITUCK 2020 OREGON INLET, NC 10/26/2019 10/29/2019 2,080 $45,000.00 

MERRITT 2020 OREGON INLET, NC 10/31/2019 11/9/2019 14,208 $275,000.00 

MERRITT 2020 OREGON INLET, NC 11/27/2019 12/8/2019 14,328 $220,000.00 

MERRITT 2020 OREGON INL, NC -NCDOT 2/14/2020 3/8/2020 45,900 $660,000.00 

CURRITUCK 2020 OREGON INLET, NC 4/15/2020 5/6/2020 16,040 $580,500.00 

CURRITUCK 2020 OREGON INLET, NC 5/14/2020 5/20/2020 4,790 $180,000.00 

MERRITT 2020 OREGON INLET, NC 6/15/2020 7/5/2020 32,490 $375,809.00 

MERRITT 2020 OREGON INLET, NC 7/19/2020 7/22/2020 5,442 $88,000.00 

CURRITUCK 2020 OREGON INLET, NC 9/4/2020 9/16/2020 4,685 $150,000.00 

Totals FY 2020 144,323 $2,730,309.00 

DREDGE 
NAME 

FY JOB NAME 
START 
DATE 

STOP 
DATE 

ACTUAL CUBIC 
YDs 

ACTUAL 
COST 

MERRITT 2021 OREGON INLET, NC 11/16/2020 11/30/2020 16,985 $198,152.00 

MURDEN 2021 OREGON INLET, NC 11/30/2020 1/6/2021 27,335 $619,400.00 

CURRITUCK 2021 OREGON INLET, NC 12/14/2020 12/18/2020 550 $105,000.00 

MERRITT 2021 OREGON INLET, NC 2/10/2021 3/1/2021 31,932 $403,160.00 

MURDEN 2021 OREGON INLET, NC 2/15/2021 2/25/2021 12,580 $292,600.00 

MERRITT 2021 OREGON INLET, NC 5/9/2021 5/19/2021 12,995 $205,000.00 

MERRITT 2021 OREGON INLET, NC 6/17/2021 6/23/2021 9,425 $140,080.00 

MERRITT 2021 
OREGON INLET (WEST), 
NC 

7/1/2021 7/14/2021 17,515 $273,328.00 

MURDEN 2021 OREGON INLET, NC 8/26/2021 8/30/2021 8,500 $182,400.00 

MURDEN 2021 OREGON INLET, NC 9/26/2021 9/30/2021 5,130 $273,600.00 

Totals FY 2021 142,947 $2,692,720.00 
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NCDOT Maintenance Records 

NCDOT provided information on NC 12 roadway maintenance activities in 2021. Table 12 lists the 

maintenance activities undertaken within the monitoring program study area in the year 2021. This list 

does not include any work associated with removal of the Herbert C. Bonner Bridge, the Basnight Bridge, 

the Rodanthe Bridge, nor any work reported on NC 12 outside of the study area. As shown, maintenance 

expenditures in 2021 were approximately $771,000 with most of the expenses related to sand removal 

and response to the November 7, 2021 coastal storm (see discussion in the Storm Events section).  

Table 12. NCDOT Highway 12 Maintenance, 2021 Expenditures. 

Dates/Event Description 
Labor & 
Material 

Equipment Other Total 

8/31/2021 
Repair Pipe 
Pea Island 

NC 12 

$1,978 L 
$708.38 M 

$819    $3,505.38  

7/12/2021 
Patching NC 

12 South 
$17,421 L 
$11.81 M 

$4,426  $3,441.96  $25,300.65  

 1/1/2021-
12/31/21 

Pea Island 
Removal of 

Sand 
$240,513.47 L $100,882.60  $362,446.12  $463,328.72  

November 
7th 2021 
Coastal 
Storm 

NC 12-Canal 
Area 

 $6,891.2 L  $534.75  $217,992.93  $218,527.68  

November 
7th 2021 
Coastal 
Storm 

NC 12-Canal 

Area  $4,294.74 L  $629.25  $60,041.61  $60,670.86  

Total $771,333.29 

 

Barrier Island Breaches 

In two locations, the barrier island was breached by Hurricane Irene in August 2011: just south of the 

freshwater ponds (Pea Island Breach) and at the north end of the town of Rodanthe (Rodanthe Breach). 

The evolution of these breaches during 2021 is shown in Figure 49 and Figure 50. The original breach 

configurations following Hurricane Irene are shown as dashed lines on the figures. Figure 49 shows Pea 

Island Breach shorelines digitized from available photography over the February 1, 2022 photograph. 

Similarly, Figure 50 presents the Rodanthe Breach shorelines digitized, over the February 1, 2022 

photography. The Pea Island Breach was closed for all of 2021, with the most seaward shoreline position 

measured in August 2021. The majority of the Rodanthe Breach (within the right of way) was filled by 

NCDOT shortly after its formation in order to repair the roadway, and the area is continuing to be 

monitored. The most seaward positions in this area were also observed in August 2021.   



Evolution of the Pea Island Breach 
Prepared for the North Carolina Department of Transportation

Horizontal Datum: North Carolina State Plane Feet 1983 FIPS 3200
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Evolution of the Rodanthe Breach 
Prepared for the North Carolina Department of Transportation
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4. TERMINAL GROIN MONITORING 

A subset of the Coastal Monitoring Program is the specific analysis of shoreline data as required by the 

easement (permit) for the Oregon Inlet Terminal Groin. Two permits have been issued for the groin, one 

in 1989 and a second in 2012.  

In 1989, prior to construction, a monitoring program was proposed and accepted to meet the 

requirements of the permit. Key elements of the program were: 1) the establishment of a historical 

shoreline change rate, 2) the determination of a project shoreline change rate every two months and 3) 

a comparison of the project rate to the historical rate to determine possible adverse impact. If the 

monitoring program determines that there is an increase in shoreline erosion above the background 

historical rates, then two thresholds for corrective beach nourishment have been established. 

These criteria are, in summary: 

1) If the erosion, in volume of sand (1 sq ft = 1 cu yd), exceeds the predicted loss in the 

amount of 250,000 cu yd in any one mile segment of the Pea Island monitoring area, or 

2) If the volume of erosion in any three mile segment of the monitoring area exceeds the 

predicted loss by 500,000 cu yd, and 

3) If either of these losses is confirmed through two consecutive two-month cycles of the 

monitoring program, then 

4) Beach nourishment will be scheduled by NCDOT with the minimum volume equaling 

that which is necessary to replace the excess erosion at the time of confirmation of need. 

A conversion of 1 square ft of beach surface to 1 cubic yd of beach volume is commonly used in coastal 

engineering design and reflects a vertical distance from the beach berm to a depth of closure of 27 ft. 

Under the conditions of the new terminal groin easement signed in August 2012, the historical rate must 

be reviewed in order to validate or update in light of climate change and related coastal processes. This 

review has been presented in a separate report to NCDOT (Overton 2014) and discussed at a number of 

meetings with NCDOT and US Fish and Wildlife Service. On April 6, 2018, a memo was received from the 

US Fish and Wildlife Service (included in the 2018 report) confirming the new methodology to determine 

the historical and project rates.  

The historical rate is now determined as a linear regression rate using shoreline data between October 

1968 and October 1988. The project rate is determined as a linear regression rate using shoreline data 

beginning in August 1992 to present. These rates are used along with the established methodology for 

determination of adverse impact.  

Unlike the previous sections, the terminal groin monitoring focuses on the first six miles of Hatteras 

Island immediately south of Oregon Inlet (Transects 170 to 381).  

Completed per the conditions of the August 2012 USFWS easement, the terminal groin monitoring 

results are presented in this section.   
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Historical Analysis 

The dates selected for the historical analysis are October 3, 1968 to October 9, 1988, inclusive of 

intermediate dates presented in Table 13. These dates have been selected following analysis (Overton 

2014) and multiple discussions with NCDOT and USFWS representatives. The early date of October 3, 

1968 was selected because it was in the 1960s as mentioned in the 2012 easement, and was also 6 years 

after the 1962 “Ash Wednesday” nor’easter, which had a dramatic impact on the barrier island 

morphology. The more recent date, October 9, 1988, was chosen because it is the most recent set taken 

prior to the March 1989 nor’easter, a storm that caused considerable erosion. The use of photography 

just after this storm had the potential to bias the historical erosion rate analysis to higher values. 

 

Table 13. Shoreline position data used for computation of historical shoreline change rate 

Date Shoreline Position Data Source 

10/3/1968 COASTS database 

6/4/1974 COASTS database 

12/2/1978 CERC-UVA Rectified photos  

10/21/1980 COASTS database 

9/19/1984 NCDOT Archive  

10/1/1986 COASTS database 

7/10/1987 CERC- UVA Rectified photos 

10/9/1988 NCDOT Archive  

 

 

Figure 51 shows the annual historical erosion rate based upon linear regression of shoreline position at 

each transect from October 1968 to October 1988. Transect 170 corresponds to mile zero reported in 

Figure 51, and Transect 381 corresponds to mile 6 (see Figure 1 for transect locations). In general, the 

historical erosion rate along this portion of Pea Island was relatively high, with a mean value of about 

12.7 ft/yr. The portion of the shoreline within the first mile of the old Coast Guard Station (closest to the 

inlet) was clearly the area of highest erosion, as one would expect near the inlet. In this area, the 

erosion rate has a maximum value of 36 ft/yr, and decreases to about 12 ft/yr approximately 1 mile 

south of the old Coast Guard Station. Rates increase to over 20 ft/year at the northernmost pond (mile 

2.6), with lower rates further south. 
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Figure 51. Annual Historical Erosion Rate: October 3, 1968 to October 9, 1988. 

 

Dates of Aerial Photography 

Shorelines digitized from the 2021 aerial photography (Table 1) were used along with other historical 

data in the following analysis. It is noted that the February 1, 2022 shoreline position was used in this 

analysis because there was no photography in December 2021. 

Shoreline Change Adjacent to the Terminal Groin 

An enlargement of the map of the northern end of Pea Island is shown in Figure 52 and Figure 53. Each 

figure shows the shoreline differences over a six month time span (December 2020 to June 2021, Figure 

52, and June 2021 to February 2022, Figure 53). Three shoreline positions are presented in each figure: 

the two between which differences are noted and the initial position prior to terminal groin 

construction (October 5, 1989). For the purpose of monitoring the impact of the terminal groin, the 

study area begins at Transect 170, which cuts through the old US Coast Guard Station. However, 
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approximately 2,000 ft of shoreline lies between the groin and Transect 170. While the change in 

shoreline in the vicinity of the groin is not included in the standard analysis of shoreline change, it is 

documented each survey period. Using Transect 170, the terminal groin, the October 5, 1989 shoreline, 

and the current shoreline as boundaries, it is possible to determine the net change in beach area since 

construction of the groin. The beach area between the terminal groin and transect 170 was essentially 

filled in by October 1992. At that time the area was approximately 51 acres. Since then, the beach area 

has varied, for the most part, between 50 and 70 acres, as seen in Figure 54. As of February 2022, the 

area between the groin and transect 170 was approximately 57 acres, while the greatest area in 2021 

was observed in August and September and was approximately 69 acres (in both months). 

 

Method of Analysis 

The method used to determine shoreline change rate has changed from endpoint in reports prior to 

2018, to linear regression. At each transect, the locations of all shoreline positions in the dataset from 

August 8, 1992 to present are used in a linear regression analysis. The shoreline change rate is the slope 

of the linear regression line at each transect. This establishes what is referred to as the “project rate,” 

which is then compared to the historical shoreline change rate. This allows for a comparison of the 

shoreline change observed during the project period (in this case, from August 8, 1992 through the end 

of calendar year 2021) as compared to the rate of the shoreline change during the period established for 

historical reference (between October 1968 and October 1988).  

In order to determine if there is any significant increase in erosion along the northern end of Pea Island, 

the one-mile and three-mile criteria have been established, as discussed previously. The one-mile 

threshold is 250,000 cu yd, while the three-mile threshold is 500,000 cu yd. The one-mile volume is 

calculated using 35 transects (approximately 5,250 ft), and the value is assigned to the transect at the 

mid-point of the section. Thus, the first value reported is for transect 187 (170 + 17).  

The three-mile volume calculations are made in a manner similar to the one-mile, with 106 transects 

(15,900 ft, or 3.01 miles) used as the distance. Again, the value used in reporting is assigned to the 

transect at the mid-point of the section. Therefore the first value is assigned to transect 223 (170+53). 
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Figure 52. Shoreline Change near the Terminal Groin, December 2020 to June 2021 
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Figure 53. Shoreline Change near the Terminal Groin, June 2021 to February 2022 
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Figure 54. Area of Accretion between Transect 170 and the Terminal Groin 

Project Erosion Rate 

Using the August 8, 1992 to February 1, 2022 data, the current project erosion rate is computed and 

compared with the previously reported historical erosion rate in  

 

Figure 55. The historical rate can be characterized by trends in three sections: in the first mile, the 

erosion rate was high with a peak of 36 ft/yr and an average of 21 ft/yr. In the next three miles, the rate 

was approximately 13 ft/yr; in the last two miles, the average rate was 9 ft/yr. The trends of the current 

project rate can also be examined according to spatial variation along the project area. Within the first 

mile of the study area, the project rate and hence, shoreline position, is clearly influenced by the groin 

and any dredge disposal activity that has taken place. The project rate in this section is, on average, 2.8 

ft/yr of accretion. In the next three miles of the study area, the current project rates are also less than 

the historical rates. The average project rate from mile 1 to 4 is 2.9 ft/yr of erosion. In the last two miles 

the average erosion rate is 3.0 ft/yr. The lower rates closer to the groin are due to the cyclic fluctuating 

shoreline caused by the presence of the terminal groin that traps sand, the ebb shoal bar which tends to 

refract the waves and reverse the direction of alongshore transport (to the north) and the occasional 

episodic supply of sand provided by the dredge disposal activities of the USACE. The project rate does 

not exceed the historical rate at any transect in the study area for 2021. 
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Figure 55. Comparison: Historical Erosion Rate and Project Erosion Rate for February 1, 2022 

One-Mile Volume Change Analysis  

The one-mile volume analyses for February 2021 through February 2022 are presented in Figure 56. The 

values are different from those in reports prior to 2018 because of the change in methodology for 

calculating the historical and project rates as of the 2018 report. Additionally, the values are similar from 

date to date because the linear regression project erosion rate does not change substantially during the 

year. The volume change everywhere is less than that predicted by the historical rates.  

Three-Mile Volume Change Analysis 

The three-mile volume analyses for February 2021 through February 2022 are presented in Figure 57. 

The values are different from those in earlier reports because of the change in methodology for 

calculating the historical and project rates, and volume change everywhere is less than that predicted by 

historical rates.  

 



 
81 

Figure 56. One-Mile Volume Change for 2021. 

 

Figure 57. Three-Mile Volume Change for 2021. 
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Terminal Groin Monitoring Summary and Conclusions 

As of February 1, 2022, the project erosion rate does not exceed the historical rate at any point in the 

first six miles south of the Oregon Inlet terminal groin. The one and three mile volume calculations are 

well below that which would be expected using the historical erosion rate. In summary, the construction 

of the groin does not appear to have caused an adverse impact to the shoreline over the six-mile study 

area. 

 

5. HIGHWAY VULNERABILITY CONCLUSIONS 

Figure 58 illustrates the changes in vulnerability throughout 2021, including values for each indicator as 

well as a composite of the three at each photo date. For the dates when no topographic data were 

obtained, the dune crest height corresponding to the previous photo date was used.  

In order to assess overall vulnerability at each transect during 2021, a composite of three of the primary 

criteria discussed in this report was created, and it is shown in Figure 59. The summary criteria were: 1) 

Island width (measured as distance from ocean to estuarine shoreline) less than 1000 ft; 2) Dune crest 

elevation less than 10 ft above NC 12; and 3) The critical buffer, where the NC 12 edge of pavement was 

within 230 ft of the present shoreline. In a change from previous reports, and based on feedback from 

meetings with NC DOT and US FWS, this figure shows the composite vulnerability based on the transect 

meeting the criterion at any point during the study year (i.e., if one transect met the island width 

criterion in February and the critical buffer criterion in December, it would be reported as having met 

two criteria during the study year). This change has led to an overall increase in the reported numbers of 

vulnerable transects. 

In reports between 2011 and 2017, the four transects within the original Pea Island Breach (and the 

associated temporary bridge) were excluded from the vulnerability analysis. NCDOT completed 

construction of a 0.5-mile interim structure in late 2017. Because the new structure is not intended as a 

long-term solution for the maintenance of NC 12, this analysis will continue to assess the distance 

between the edge of pavement (bridge) and the ocean shoreline within the interim bridge area. All 

transects are now being included in the composite vulnerability plots from the 2018 report and moving 

forward. 
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Figure 58. Composite NC 12 vulnerability along the study area at each photo date; note that for the 
June imagery, the dune crest height at the previous date was used because no topographic data were 

obtained. 
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Figure 59. Composite NC 12 vulnerability along the study area, considering criteria met during any of 
the photo dates in 2021. 

 

As determined by the established 230 ft critical buffer vulnerability criteria, there were 90 transect 

locations along NC 12 that were vulnerable in 2021, a decrease from the number reported at the end of 

2020. The transects where the shoreline was located within the 230 ft buffer were Transects 202-241, 

245-249, 296-314, 541-544, 547, and 564-584. 

There were 31 transects at which the island widths were less than 1000 ft during the 2021 study year: 

Transects 238-239 and 244-246 in the Canal Zone, Transects 408-416 and 421-424 south of the Pea 

Island Breach, and 11 transects distributed between Transects 535 and 549 narrow area north of 

Rodanthe, approximately miles 10.4 - 10.8); and Transects 575 and 576 (approximately mile 11.5 near 

the southern refuge boundary). 
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There were 115 transects with dune crest elevations less than 10 ft above the NC 12 centerline elevation 

at some point in 2021. The transects with dune crest elevations less than 10 ft above the NC 12 

elevation are widely distributed over the study area, with the exception of the well-developed dune field 

in place from approximately miles 7.5 to 10.5 south of the Old Coast Guard Station.  

The areas of primary concern (meeting more than one of the criteria) as shown on Figure 59 were 

located in the Canal Zone, near the Pea Island Visitors Center between the north and center ponds, 

south of the Pea Island Breach, and in northern Rodanthe. This result is similar to results reported in 

past updates. 

Figure 60 presents a comparison of the vulnerability from the baseline report to the present (2021) 

report. These conditions are the conditions at the end of each study year. The transects that have been 

the most vulnerable throughout the study period are highlighted in red (Transects 244-245 and 

Transects 575-576). 
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Figure 60. Comparison of vulnerability from the baseline report to the 2021 report. Vulnerabilities 
reported at the end of each study year. 
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Wildlife Refuge, Dare County 

 

Introduction 

 

This report summarizes and graphically presents the results of ten years (4 quarterly 

sampling events per year) of monitoring the physical and ecological condition of the beach 

on Pea Island National Wildlife Refuge (PINWR) from the Terminal Groin to Mirlo Beach.   

 

In 2012, as a condition of the new easement for Retention and Maintenance of the Oregon 

Inlet Terminal Groin at Pea Island NWR, the North Carolina Department of Transportation 

Biological Surveys Group (NCDOT BSG), implemented a monitoring program to provide 

the US Fish and Wildlife Service (USFWS) with data on the physical and biological 

attributes of the beach sand on PINWR.  This study encompasses the entire length of the 

Refuge beach, from the Terminal Groin to Rodanthe (Figure 1). 

http://www.ncdot.gov/


 
 

The purpose of this multi-year study is to monitor the environmental effects of the Terminal 

Groin and any future beach nourishment or other activities on Pea Island National Wildlife 

Refuge in Dare County, NC.  

 

Sampling was conducted quarterly; usually in January, April, July and October.  There are 

62 total transects beginning at the terminal groin (TG) and continuing south every 0.2 miles 

to the southern terminus of PINWR in Mirlo Beach.  The first transect is located 0.1 mi 

south of the TG (numbered TG1), the 2nd 0.3 mi south of the TG (numbered TG2) and the 

third 0.5 mi south of the TG (numbered T1). Subsequent transects will continue with odd 

numbers through transect T29, so that they coincide with existing PINWR data points, and 

are located at 0.2 mi intervals. Beyond T29 transects are numbered in sequence (T30 - T74) 

to the southern boundary of the Refuge.    

 
 



 
 

Meteorological and Other Activities Affecting the PINWR Beach 

 

In August 2011 Hurricane Irene breached NC 12 in two locations in the project area – in  

northern Rodanthe (the “Rodanthe breach”) approximately 12 miles south of Oregon Inlet 

and within the Pea Island National Wildlife Refuge (Refuge) approximately 6 miles south 

of Oregon Inlet (the new “Pea Island inlet”) (see Figure 1). NCDOT repaired the section 

of NC 12 at the Pea Island inlet by installing a temporary bridge across the inlet. This 

temporary bridge was completed in October 2011.  The Rodanthe breach was filled 

using sand sources from Hatteras Island, and the NC12 roadway was repaired within 

the existing easement. Since then, this bridge has been replaced by an interim bridge over 

the Pea Island breach to provide for interim safe and reliable transportation while the long-

term solution is re-evaluated and constructed.  

 

Hurricane Sandy, in October 2012, and two subsequent northeasters in November 2012 

caused extensive shoaling near the mouth of the Pea Island inlet. Overwash during  

Hurricane Sandy resulted in more than three miles of dunes being lost or severely damaged 

between Oregon Inlet and Rodanthe.  Repair work on NC 12 including rebuilding the 

sandbag dune at the S-curves occurred between November 2012 and January 2013.  As of 

May 2013, the Pea Island Inlet closed as a result of naturally-occurring coastal processes.  

 

From November to December 2013 sand was bypassed from a dredging operation in  

Oregon Inlet to the PINWR beach just south of the Terminal Groin.  Approximately  

581,000 cubic yards of sand were deposited on the Pea Island beach just south of the  

terminal groin. 

 

From May through October 2014 a beach nourishment project was conducted on the 

southern 2 miles of PINWR and further onto National Park Service beach property.  The 

sand sampling event occurred 1 week after the completion of the project and Transects 66 

thru 73 occur in the nourishment area (Figure 2). 

 

Hurricane Arthur, in July 2014, hit the outer banks, including Pea Island as a Category 2 

Hurricane. Hurricane Arthur caused the Inlet, that was originally opened by Hurricane 

Sandy, to re-open; however, flow in subsequent weeks was reduced to limited sheet flow 

during high tides and the inlet closed again.  

 

In the winters of 2015 and 2016, heavy Nor’easters hit Pea Island with 30-45mph winds 

and gusts in the upper 60+ mph range. The surf was approximately 12+ feet causing 

flooding and major washouts. Nor’easters are common during the winter, but many are not 

this intense.  

 

In September 2016, Hurricane Hermine hit as a tropical storm, with heavy rainfall. Directly 

following in October 2016 Hurricane Matthew brings record rainfall and devastating 

flooding to the area. Hurricane Matthew brought approximately 9.4 inches of rain and wind 

speeds reached 74mph.  

 

On September 18, 2017, Hurricane Jose passed the outer banks as a tropical storm with 

sustained winds of 85 mph, causing major flooding along PINWR and NC 12. Although 



 
 

the strongest winds stayed offshore, with no direct hit to the outer banks, approximately 4 

inches of standing water was reported causing closures of NC 12 through the PINWR.  

 

On September 26 and 27, 2017, Hurricane Maria downgraded to a tropical storm with 

sustained winds of 70 mph before hitting the outer banks of NC, including the PINWR. 

Maria brought high storm surges with flooding which led to the temporary closure of many 

roads in the area. At the time, because of the predicted damage due to high winds and a 

water level rise of at least 2-4 ft, an evacuation was recommended in this area.  

 

Winter Storm Riley affected the US East Coast in early March 2018 causing coastal 

flooding and beach erosion over multiple high tides prompting the closure of NC 12 

through PINWR during these high tides. 

 

Tropical Strom Chris formed off the coast of North Carolina in early July 2018. This storm 

caused heavy rain and erosion. High swells from the storm affected multiple areas along 

the Outer Banks.  

 

Hurricane Florence, on September 14, 2018, brought winds up to 90 mph to the island with 

ocean overwash and a 13-foot storm surge. This contributed to dune erosion within 

PINWR. NCDOT closed NC 12 between Hatteras Village and the Bonner Bridge noting 

multiple locations were impassable including areas near PINWR.  

 

Hurricane Michael was downgraded to a tropical storm as it passed through North Carolina 

on October 11 and 12, 2018. Gusts were observed as high as 74 mph in the northern Outer 

Banks including PINWR and water levels, from the storm surge, were 2-4 feet above 

ground level.  

 

On September 6, 2019, Hurricane Dorian made landfall on Ocracoke Island and moved 

north over Hatteras Island causing severe beach erosion.  This storm also resulted in a 7ft. 

storm surge on the sound.  

 

October 11 and 13, 2019 Sub-Tropical storm Melissa hung offshore during a Harvest Moon 

tide for three to four days of high tide overwash of NC 12, burying the S-Curves area under 

approximately 5 ft of sand. The road was not compromised. 

 

On November 16 and 17, 2019 heavy winds, up to 45 mph, and rain caused sand overwash 

and flooding: the storm compromised NC 12 causing closures from Marc Basnight Bridge 

(Oregon Inlet) to Rodanthe.  

 

In April of 2020, an unnamed storm brought heavy overwash and flooding along NC 12.  

 

On August 4, 2020 Isaias made landfall as a Category 1 hurricane in Ocean Isle, NC but 

brought tropical-storm-force winds (48 mph sustained, and 63 mph gusts) and a 2-4 ft storm 

surge to Oregon Inlet. Flooding was reported along NC 12. However, no overwash was 

reported.  

 

On September 21, 2020, a triple threat hit PINWR including: seasonal high tides, strong 

northeast winds and long wave forms from Hurricane Teddy, which was hundreds of miles 



 
 

off shore. These conditions caused overwash and dune losses along the refuge and closed 

several locations along NC 12.   

 

On November 7, 2021, after the fall survey, NC 12 was closed between Rodanthe and 

Oregon Inlet due to moderate to major overwash in the Mirlo Beach area. Waves reached 

15 to 20 ft. in the surf zone with wind gusts up to 60 mph, which led to dangerous beach 

conditions, flooding, and erosion 

 

 

 

 

 
April 2020. Flooding reported along NC12 during unnamed storm event.  

 

 



 
 

 
September 21, 2020. NC12 road closure in Mirlo Beach, NC.  

 

 

 
September 21, 2020. NC 12 road closure from storm event overwash and King tide.   



 
 

 
November 8, 2021. Highway 12 (“S” Turn) just north Rodanthe. Credit: NCDOT 

 

 

SAMPLING METHODS 

 

Macrobenthos 

The swash zone of a beach is a constantly changing and complex habitat that supports many 

species of organisms unique to shorelines.  Surf clams and mole crabs are two species that 

stand out as inhabitants of the surf zone. Both animals are extremely fast burrowers, able 

to rebury themselves almost as fast as they become exposed in shifting sands. The surf 

clam, also known as the coquina clam (Donax variabilis), is a filter feeder that uses its gills 

to filter microalgae, tiny zooplankton, and small particulates out of seawater. The mole 

crab (Emerita talpoida) is a suspension feeder that feeds by capturing zooplankton with its 

antennae.  Further up the beach, somewhat removed from intense wave action, is where the 

ghost crab (Ocypode quadrata) makes its home by burrowing into the sand (Dolan, et al. 

2004).   

 

These organisms serve as excellent indicator species for estimating the overall physical  

conditions of sandy beaches as well as deviations from the natural state of these beaches.   

These two taxa (mole crabs and coquina clams) do not flourish when the beach sand is too 

coarse, too fine, or polluted.  Both have adapted to rapid physical changes in the swash-

zone in order to maintain their positions in the beach to optimize feeding efficiency.  To 

ensure survival, these intertidal organisms must respond rapidly to the changes that beach 

nourishment introduces or perish.  Any changes to the beach that impact coquina clams 

and mole crabs have ecological impacts far beyond the swash zone (Dolan, et al. 2004). 



 
 

 

Finer sand with a heavier mineral content increases compaction which makes it harder for  

the clams and mole crabs to burrow in and out of the sand.  Decreases in the abundances 

of these animals, as well as ghost crabs, results in a loss to the base of the food chain on  

PINWR. 

 

 

 
Figure 2.  Location of Transects, Pea Island National Wildlife Refuge, Dare County, NC              

Within the 2014 Beach Nourishment Area. 

 



 
 

Benthos Field Methods 

Three sand samples were taken from each transect at random locations within the swash  

zone.  In addition, a ghost crab burrow count was made in the upper beach area at the foot  

of the dunes.  To conduct these counts a 1-meter diameter hoop was randomly tossed three 

times in the area between the toe of the dune and the wrack line.  The number of crab 

burrows were counted from each toss and combined.  The benthic sand samples were taken 

using a cylindrical corer with internal diameter of 4” (PVC pipe), inserted 4” into the swash 

zone.  The resulting sample was then filtered through a 1mm mesh sieve to isolate the 

macrofauna.  The mole crab (Emerita spp.) individuals were measured for separation into 

size classes, enumerated and released.  Donax spp., amphipods and worms were 

enumerated and released.  The size classes for Emerita sp. are as follows: Small (1-4mm), 

Medium (4-8mm), and Large (>8mm).  Physical data collected included water temperature, 

air temperature, wave height, salinity, sand bar distance offshore, and presence and height 

of erosion scarps on the beach face.  Digital photographs were taken at each transect during 

each sampling occurrence. 
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Collecting benthos sample in swash zone 
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Counting benthos 

 

 
Emerita talpoidea 



 
 

 
Coquina clams in the swash 

 

 

Sand Sampling Introduction 

 

Sediments that comprise the beaches and barrier islands of the Outer Banks of NC can be  

described in three size classes: Coarse, consisting of sands and gravel (0.5mm up to 2mm), 

medium (0.25mm to 0.5mm) and fine (grain size below 0.25mm) (Dolan et al, 2004). 

Changes to beach sand size or color (mineral content) can affect its biological and  

ecological processes.  Darker sand will cause an increase in temperature that could affect  

turtle hatching and changes in sand coarseness will alter the distribution and density of the 

benthic community and could result in changes to beach slope and scarping if too much 

fine sand is deposited.  The sand used to nourish the beach at the project location must be 

compatible with regards to grain size and mineralogy to the indigenous sand of Pea Island. 

 

Sand Field Methods 

Each of the 62 transects has 4 sample locations for a total of 248 samples.  The upper beach 

sample was collected at the toe of the dune at a depth of 8-12 inches.  The upper swash 

surface sample was collected at the wet line.  The lower swash sample was collected half 

way between the upper and lower swash areas.  All swash samples were collected within 

6 inches of the surface.  Samples and sample locations were identified by the site:  Transect 

(1 through 74) and location (toe of dune=D, upper-swash=C, mid-swash=B, lower-

swash=A).   

 

Compaction and the slope of the beach were measured from each transect just above the  

upper swash zone.  Each sand sample was analyzed for grain size and heavy mineral  

content. 

 

Compaction measurements were collected just above the upper-swash zone from the  

surface to 12-inches deep with a DICKEY-john Soil Compaction Tester.  Compaction  



 
 

measurements were recorded every three inches. According to United States Army Corp 

of Engineers personnel, this equipment (DICKEY-john Soil Compaction Tester) is  

commonly used for compaction testing in similar studies.  There is no ASTM method  

associated with the soil compaction tester.  Slope measurements were made using a  

Brunton™ compass placed on a 12-inch board.  The 12-inch board was oriented  

perpendicular to the water’s edge. 

 

Sand samples consisting of an amount equivalent to about ¼ cup of material were placed 

in sealable polyethylene bags for lab analysis.  Samples were submitted to the NCDOT  

Materials and Test Unit Soils laboratory for sieve analysis and to the North Carolina  

Geologic Survey for heavy mineral analysis. 

 

 
Collecting sand sample for grain size analysis 

 

Laboratory Testing 

 

Grain size analysis 

Samples were delivered to the NCDOT Soil Laboratory for sieve analysis in accordance  

with 1995 Standard Specifications.  The following sieve sizes were used for analysis. #4  

(4.75mm), #10 (2mm), #18 (1mm), #25 (0.75mm), #35 (0.5mm), #60 (0.25mm), #100  

(0.15mm), and #140 (0.106mm).  The samples were dried, split evenly and approximately 

200 grams was weighed for sieve analysis.  Samples were washed over the # 200 sieve 

until the wash water ran clear, transferred to a sample container and placed in an oven to 

dry at a temperature of 230 degrees Fahrenheit.  Dried samples were then poured into the 

nest of required sieves and shaken for a short period of time.  The retained material on each 

individual sieve was weighed and recorded. 

 

Mean grain size was determined by calculating the mean of the 25th and 75th percentiles of 

the % of sand passing through each size sieve.  The 25th, 75th percentile were  

determined by graphing the % passing results of each sample per sieve size.  



 
 

 
Measuring compaction 

 

Laboratory Testing 

 

Minerals analysis 

The samples were analyzed by the North Carolina Geological Survey Lab. Each of the two 

hundred and forty-eight (248) samples, per sampling event, was washed over a sieve with 

62.5 micron, (4 phi (Ø), openings to remove salt water and any mud. The samples were 

then placed in a warm oven overnight until dry. The samples were reduced in size, with a 

sample splitter until a reasonably sized sub sample was obtained.  Each sample was 

transferred into a Pyrex dish, 88 mm in diameter, spread out until a single layer of mineral 

grains was obtained, and then examined with a binocular microscope at 10x.  Nine (9) 

random views were examined under the binocular microscope for each sample. The 

number of heavy mineral grains in each of the nine views was counted and recorded.  

Volumetric estimates were performed on the percent of heavy minerals by comparing the 

views with standard area percentage diagrams. An average number of heavy minerals for 

each of the 248 samples was calculated.  An average percent of heavy minerals for each of 

the 248 samples was also calculated.   Five (5) samples were chosen at random and re-

counted for quality control. The QC analyses were within 10% of the original counts.  Two 

(2) samples, per sampling event, were chosen and the heavy mineral content was identified 

to individual mineral species. The following minerals were identified: epidote, staurolite, 

garnet, kyanite, ilmenite, magnetite, zircon, tourmaline, rutile, and pyroxene/amphibole. 

Pyroxene and amphibole are grouped together due to difficulty in differentiating the 

separate minerals.  



 
 

RESULTS AND ANALYSIS 

 

Physical parameters and biological data were entered to an Excel spreadsheet after each  

sampling event.  Tabulated sample results and copies of the raw data were submitted to the 

Pea Island NWR biologist at the end of the sampling year.  An annual report will be 

submitted in hard copy and electronic format.   

 

Data will be analyzed according to methods in Dolan, 2004: Analysis of Changes in the  

Beach Sediment and Beach-face Organisms Associated with Sand Bypassing from the  

Oregon Inlet to Pea Island, North Carolina, 1990-2002. 

 

The graphs represented at the end of this document summarize the data collected in 2012 

through 2021. This section of the report will cover the analysis for the three “trouble spots” 

located on Pea Island.  

 

Beginning in 2018, three areas identified by the ongoing Coastal Monitoring Program as 

problem areas: The Canal Zone, the PI Inlet area, and the Rodanthe S-Curves (Figures 3-

7). These “trouble spots” were separated out and the data were analyzed to determine if 

these areas were exhibiting any changes that may have been masked by the overall island 

analysis. Graphs summarizing this data are presented after the overall analyses (Figures 

19, 20, and 21). 

 

Beginning in 2019, data was analyzed with a cubic function rather than a linear function. 

This function indicates an inverse relationship between grain size and species abundance. 

Generally, grain size distributions and species abundance across the study area were as 

expected with seasonal and long-term variations. The data also indicate that major storms 

have an influence over benthic numbers, but these numbers recover over time. 

 

When the three “trouble spots” are analyzed separately, the data indicates seasonal and 

long-term variations in congruence with the overall analysis. Although the relationship 

between grain size and species abundance was different between each “trouble spot.” After 

analyzing the data of the “trouble spots” for 2019-2021, there is a constant strong inverse 

relationship (5-year cycle) between average grains size and average species abundance in 

the PI Inlet area (Figure 20). Although the data indicates that there is a weak inverse 

relationship between the average grains size and average species abundance within the 

Canal Zone and the Rodanthe S-Curve (Figures 19 and 21). This relationship has fluctuated 

between a weak inverse relationship and a linear relationship, with the 2021 data indicating 

a long term (10-year cycle) weak inverse relationship between average grain size and 

average species abundance. In the Canal Zone this is currently a positive inverse 

relationship as the average number of species is continuing to increase. In the Rodanthe S-

Curve this is currently a negative inverse relationship, where the average increase in grain 

size is decreasing the average number of species observed at this location. The immediate 

drop in the average grain size from summer of 2020 (1.08mm) to the fall of 2020 (0.56mm), 

along with only an increase to 0.75mm in the summer of 2021, resulted in a rising trend 

for average abundance of species within the Canal Zone. The S-Curve average grain size 

from spring of 2020 to the fall of 2021 averaged 0.81mm which resulted in a decreasing 

average species abundance trend while the trend for the average grain size is steadily 

increasing. Since 2012, the average grain size within the PI Inlet Zone has ranged from 



 
 

0.5mm to 1.30mm with an overall average grain size of 0.8mm, with the average grain size 

currently on a downward trend. The decreasing trend in grain size at the PI Inlet Zone, for 

2021, produced the second highest average species abundance (49 species per transect) 

since July of 2013 (73.5 species per transect).  

 

In the Summer of 2020, the Canal Zone observed its first survey that recorded an average 

grain size of over 1.00mm (1.08mm), while the winter of 2020 was only the second 

occurrence of an average grain size over 1.00mm (1.15mm) for the S-Curve. The 2021 

survey year resulted is the first occurrence since 2015 that the average grain size for all 

three “trouble spots” did not exceed 1.00mm. This resulted in an abundance of benthic 

species collected, averaging approximately 40 species per sample in the summer of 2021. 

Hurricanes and other major storms had little to no effects on the 2021 survey results.  
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Fig.8 – Average number of species per season in the winter and spring of 2012-2021. 

 

Fig.9 – Average number of species per season in the summer and fall of 2012-2021.
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Fig.10 – Average species and total mean grain size comparison.  

 

Fig.11 – Total number of species observed during each survey.  
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Fig.12 – Total number of species observed per year.  

 

Fig.13 – The mean grain size compared to the average number of species observed per survey.  
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Fig.14 – The comparison between compaction and slope. Note: January 2019 compaction data not available. 
 

 

Fig.15 – The comparison between the average number of species observed per survey and average compaction.  
 Note: January 2019 compaction data not available 
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Fig.16 – The comparison between the average percent heavy minerals and the average number of species found per

 survey. Note: 2015-2019 heavy mineral sand analysis was performed using a different method.  

 

Fig.17 – The percent of primary heavy minerals observed in each survey.  
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Month of Survey

Primary Heavey Minerals

Garnet Ilmenite Magnetite Pyroxene/ amphibole

* Major Storm Before Survey 
** Major Strom After Survey  

*** Major Storm Before and After Survey  

* Major Storm Before Survey 
** Major Strom After Survey  
*** Major Storm Before and After Survey  



 

Fig.18 – The percent of secondary heavy mineral observed in each survey.  

 

Fig.19 – Average species and total mean grain size comparison for the Canal Zone.  
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Month of Survey

Secondary Heavy Minerals

Others Staurolite Kyanite Zircon Tourmaline Rutile
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Month of Survey 

Average Species and Total Mean Grain Size Comparison 
for the Canal Zone 

 Canal Zone Avg. Grain Size  Canal Zone Avg. Species Grain Size Trend Species Trend

* Major Storm Before Survey 
** Major Strom After Survey  

*** Major Storm Before and After Survey  

* Major Storm Before Survey 
** Major Strom After Survey  
*** Major Storm Before and After Survey  



 

Fig.20 – Average species and total mean grain size comparison for the Pea Island Inlet Zone.  

 

Fig.21 – Average species and total mean grain size comparison for the Rodanthe S-Curve Zone.  
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* Major Storm Before Survey 
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*** Major Storm Before and After Survey  

* Major Storm Before Survey 
** Major Strom After Survey  
*** Major Storm Before and After Survey  



2012 Sand Survey Statistics 

 

 

 2012 Statistics 

  VAR STD STE mean Min Max Range 
Avg. Grain 

Size  
0.03 0.17 0.03 0.64 0.46 0.85 0.38 

Mean sand 
grain size 

lower 
swash 
(mm) 

0.13 0.36 0.06 0.97 0.63 1.38 0.76 

Mean sand 
grain size 
mid swash 

(mm) 

0.04 0.19 0.03 0.67 0.54 0.96 0.41 

Mean sand 
grain size 

upper 
swash 
(mm) 

0.01 0.10 0.02 0.39 0.30 0.54 0.24 

Mean sand 
grain size 

toe of dune 
(mm) 

0.01 0.10 0.02 0.36 0.28 0.51 0.23 

Total 
Benthos 

1242991.6 1114.9 185.8 971.3 278.0 2618.0 2340.0 

Avg. 
Species 

309.0 17.6 2.9 15.3 4.5 41.3 36.8 

Avg Slope 
Degrees 

0.13 0.36 0.06 4.34 3.97 4.84 0.87 

Avg Comp 1193.26 34.54 5.76 172.73 144.04 222.97 78.93 
% HM 
Lower 
Swash 

0.16 0.40 0.07 0.95 0.63 1.50 0.88 

& HM Mid 
Swash 

0.29 0.54 0.09 1.37 0.82 1.95 1.13 

% HM 
Upper 
Swash 

0.65 0.80 0.13 2.38 1.34 3.19 1.85 

% HM Dune 3.39 1.84 0.31 13.24 10.57 14.72 4.15 
Average 

%HM 
0.08 0.28 0.05 4.49 4.21 4.86 0.65 

 
 

Table 1 – The 2012 statistics analyzing the variance, standard deviation, standard error, mean, minimum, maximum, and 
    ranges of the mineral and benthic data collected from each survey (winter, spring, summer, fall).   

  



2013 Sand Survey Statistics 

 

 

 2013 Statistics  

  VAR STD STE mean Min Max Range 

Avg. Grain 
Size  

0.00 0.06 0.01 0.71 0.63 0.76 0.13 

Mean sand 
grain size 

lower 
swash 
(mm) 

0.06 0.25 0.04 1.12 0.80 1.42 0.62 

Mean sand 
grain size 
mid swash 

(mm) 

0.00 0.04 0.01 0.73 0.70 0.79 0.09 

Mean sand 
grain size 

upper 
swash 
(mm) 

0.01 0.11 0.02 0.49 0.39 0.63 0.24 

Mean sand 
grain size 

toe of dune 
(mm) 

0.00 0.02 0.00 0.32 0.29 0.34 0.05 

Total 
Benthos 

981732.3 990.8 165.1 824.8 118.0 2245.0 2127.0 

Avg. 
Species 

239.0 15.5 2.6 13.0 1.9 35.1 33.2 

Avg Slope 
Degrees 

1.61 1.27 0.21 4.37 3.31 6.20 2.89 

Avg Comp 5470.91 73.97 12.33 195.82 99.72 266.08 166.37 
% HM 
Lower 
Swash 

0.07 0.27 0.05 0.83 0.52 1.17 0.65 

& HM Mid 
Swash 

0.05 0.23 0.04 0.91 0.61 1.12 0.51 

% HM 
Upper 
Swash 

0.12 0.34 0.06 1.74 1.30 2.12 0.82 

% HM Dune 14.65 3.83 0.64 9.68 6.46 15.15 8.69 

Average 
%HM 

0.98 0.99 0.17 3.29 2.48 4.71 2.23 

 

 

Table 2 – The 2013 statistics analyzing the variance, standard deviation, standard error, mean, minimum, maximum, and 
    ranges of the mineral and benthic data collected from each survey (winter, spring, summer, fall).   
 

 

  



2014 Sand Survey Statistics 
 

 

 2014 Statistics 

  VAR STD STE mean Min Max Range 

Avg. Grain 
Size  

0.01 0.12 0.02 0.80 0.64 0.89 0.25 

Mean sand 
grain size 

lower 
swash 
(mm) 

0.08 0.29 0.05 1.31 0.94 1.59 0.65 

Mean sand 
grain size 
mid swash 

(mm) 

0.05 0.22 0.04 0.78 0.59 1.09 0.51 

Mean sand 
grain size 

upper 
swash 
(mm) 

0.03 0.17 0.03 0.54 0.39 0.78 0.39 

Mean sand 
grain size 

toe of dune 
(mm) 

0.00 0.01 0.00 0.35 0.34 0.36 0.03 

Total 
Benthos 

303399.0 550.8 91.8 423.5 17.0 1191.0 1174.0 

Avg. 
Species 

77.1 8.8 1.5 6.8 0.2 18.9 18.7 

Avg Slope 
Degrees 

1.06 1.03 0.17 4.16 2.73 5.18 2.45 

Avg Comp 322.98 17.97 3.00 169.12 145.47 186.66 41.19 
% HM 
Lower 
Swash 

0.01 0.10 0.02 1.07 0.92 1.14 0.23 

& HM Mid 
Swash 

0.05 0.22 0.04 1.04 0.74 1.25 0.52 

% HM 
Upper 
Swash 

2.59 1.61 0.27 2.62 1.23 4.52 3.29 

% HM Dune 0.27 0.52 0.09 6.18 5.74 6.75 1.01 

Average 
%HM 

0.21 0.46 0.08 2.73 2.29 3.13 0.84 

 

 

Table 3 – The 2014 statistics analyzing the variance, standard deviation, standard error, mean, minimum, maximum, and 
    ranges of the mineral and benthic data collected from each survey (winter, spring, summer, fall).   

 

  



2015 Sand Survey Statistics 

 

 

 2015 Statistics 

  VAR STD STE mean Min Max Range 

Avg. Grain 
Size  

0.02 0.13 0.02 0.79 0.63 0.90 0.27 

Mean sand 
grain size 

lower 
swash 
(mm) 

0.12 0.34 0.06 1.23 0.80 1.61 0.81 

Mean sand 
grain size 
mid swash 

(mm) 

0.01 0.12 0.02 0.80 0.68 0.96 0.28 

Mean sand 
grain size 

upper 
swash 
(mm) 

0.03 0.18 0.03 0.57 0.41 0.81 0.40 

Mean sand 
grain size 

toe of dune 
(mm) 

0.00 0.02 0.00 0.35 0.34 0.38 0.04 

Total 
Benthos 

1039432.9 1019.5 169.9 671.8 47.0 2191.0 2144.0 

Avg. 
Species 

270.4 16.4 2.7 10.8 0.8 35.3 34.6 

Avg Slope 
Degrees 

1.97 1.40 0.23 5.23 3.93 7.19 3.26 

Avg Comp 5664.01 75.26 12.54 150.30 55.81 228.91 173.09 
% HM 
Lower 
Swash 

3.89 1.97 0.33 2.46 0.76 4.66 3.90 

& HM Mid 
Swash 

3.39 1.84 0.31 2.53 0.91 4.53 3.61 

% HM 
Upper 
Swash 

3.50 1.87 0.31 3.03 1.05 5.29 4.24 

% HM Dune 62.15 7.88 1.31 10.15 5.10 21.89 16.79 

Average 
%HM 

3.02 1.74 0.29 2.58 0.87 4.98 4.11 

 

 

Table 4 – The 2015 statistics analyzing the variance, standard deviation, standard error, mean, minimum, maximum, and 
    ranges of the mineral and benthic data collected from each survey (winter, spring, summer, fall).   
 

  



2016 Sand Survey Statistics 

 

 

 2016 Statistics 

  VAR STD STE mean Min Max Range 

Avg. Grain 
Size  

0.02 0.16 0.03 0.73 0.55 0.88 0.33 

Mean sand 
grain size 

lower 
swash 
(mm) 

0.13 0.35 0.06 1.14 0.75 1.53 0.77 

Mean sand 
grain size 
mid swash 

(mm) 

0.06 0.23 0.04 0.78 0.51 1.08 0.57 

Mean sand 
grain size 

upper 
swash 
(mm) 

0.01 0.10 0.02 0.48 0.39 0.57 0.18 

Mean sand 
grain size 

toe of dune 
(mm) 

0.00 0.03 0.00 0.34 0.31 0.36 0.06 

Total 
Benthos 

1672001.7 1293.1 215.5 855.5 62.0 2771.0 2709.0 

Avg. 
Species 

434.4 20.8 3.5 13.8 1.0 44.7 43.7 

Avg Slope 
Degrees 

2.07 1.44 0.24 4.34 2.85 6.15 3.29 

Avg Comp 5973.63 77.29 12.88 143.95 49.11 222.44 173.34 
% HM 
Lower 
Swash 

13.04 3.61 0.60 3.86 0.81 8.03 7.21 

& HM Mid 
Swash 

17.10 4.14 0.69 4.42 0.89 9.07 8.18 

% HM 
Upper 
Swash 

49.30 7.02 1.17 8.38 2.58 17.42 14.84 

% HM Dune 126.30 11.24 1.87 13.74 4.60 28.74 24.14 

Average 
%HM 

0.47 0.69 0.11 1.85 1.09 2.52 1.43 

 

 

Table 5 – The 2016 statistics analyzing the variance, standard deviation, standard error, mean, minimum, maximum, and 
    ranges of the mineral and benthic data collected from each survey (winter, spring, summer, fall).   
  



2017 Sand Survey Statistics 

 

 

 2017 Statistics 

  VAR STD STE mean Min Max Range 

Avg. Grain 
Size  

0.01 0.09 0.02 0.78 0.67 0.87 0.19 

Mean sand 
grain size 

lower 
swash 
(mm) 

0.05 0.22 0.04 1.10 0.83 1.32 0.49 

Mean sand 
grain size 
mid swash 

(mm) 

0.01 0.10 0.02 0.74 0.60 0.84 0.24 

Mean sand 
grain size 

upper 
swash 
(mm) 

0.00 0.07 0.01 0.51 0.45 0.61 0.16 

Mean sand 
grain size 

toe of dune 
(mm) 

0.00 0.03 0.00 0.35 0.33 0.39 0.05 

Total 
Benthos 

620117.6 787.5 131.2 727.3 45.0 1801.0 1756.0 

Avg. 
Species 

160.5 12.7 2.1 11.7 0.7 29.0 28.3 

Avg Slope 
Degrees 

0.21 0.46 0.08 3.83 3.32 4.32 1.00 

Avg Comp 453.37 21.29 3.55 164.87 145.36 191.88 46.51 
% HM 
Lower 
Swash 

15.60 3.95 0.66 4.61 0.87 10.19 9.32 

& HM Mid 
Swash 

16.38 4.05 0.67 5.99 1.14 11.05 9.91 

% HM 
Upper 
Swash 

16.22 4.03 0.67 7.49 1.49 9.80 8.31 

% HM Dune 34.09 5.84 0.97 17.52 11.28 22.61 11.33 

Average 
%HM 

12.20 3.49 0.58 8.92 3.69 10.98 7.29 

 

 

Table 6 – The 2017 statistics analyzing the variance, standard deviation, standard error, mean, minimum, maximum, and 
    ranges of the mineral and benthic data collected from each survey (winter, spring, summer, fall).   

  



2018 Sand Survey Statistics 
 

 

 2018 Statistics 

  VAR STD STE mean Min Max Range 

Avg. Grain 
Size  

0.01 0.10 0.02 0.70 0.59 0.79 0.20 

Mean sand 
grain size 

lower 
swash 
(mm) 

0.21 0.46 0.08 1.29 0.79 1.76 0.97 

Mean sand 
grain size 
mid swash 

(mm) 

0.01 0.09 0.02 0.60 0.47 0.70 0.23 

Mean sand 
grain size 

upper 
swash 
(mm) 

0.00 0.06 0.01 0.50 0.46 0.59 0.13 

Mean sand 
grain size 

toe of dune 
(mm) 

0.00 0.02 0.00 0.43 0.41 0.45 0.04 

Total 
Benthos 

130528.9 361.3 60.2 329.3 10.0 825.0 815.0 

Avg. 
Species 

35.1 5.9 1.0 5.4 0.2 13.5 13.4 

Avg Slope 
Degrees 

1.78 1.33 0.22 4.60 3.47 6.53 3.06 

Avg Comp 125.54 11.20 1.87 180.66 163.93 187.06 23.13 
% HM 
Lower 
Swash 

0.54 0.73 0.12 1.25 0.64 2.29 1.65 

& HM Mid 
Swash 

2.18 1.48 0.25 1.87 0.97 4.07 3.09 

% HM 
Upper 
Swash 

3.84 1.96 0.33 2.44 0.98 5.24 4.25 

% HM Dune 53.66 7.33 1.22 13.75 6.14 22.11 15.97 

Average 
%HM 

6.97 2.64 0.44 4.83 2.31 8.43 6.12 

 

 

Table 7 – The 2018 statistics analyzing the variance, standard deviation, standard error, mean, minimum, maximum, and 
    ranges of the mineral and benthic data collected from each survey (winter, spring, summer, fall).   

  



2019 Sand Survey Statistics 

 

 

 2019 Statistics 

  VAR STD STE mean Min Max Range 

Avg. Grain 
Size  

0.05 0.21 0.04 0.78 0.58 1.02 0.45 

Mean sand 
grain size 

lower 
swash 
(mm) 

0.35 0.59 0.10 1.31 0.63 1.96 1.33 

Mean sand 
grain size 
mid swash 

(mm) 

0.02 0.14 0.02 0.69 0.55 0.89 0.33 

Mean sand 
grain size 

upper 
swash 
(mm) 

0.04 0.19 0.03 0.64 0.46 0.83 0.38 

Mean sand 
grain size 

toe of dune 
(mm) 

0.00 0.06 0.01 0.49 0.44 0.58 0.14 

Total 
Benthos 

2667603.0 1633.3 272.2 1223.5 7.0 3590.0 3583.0 

Avg. 
Species 

716.9 26.8 4.5 20.1 0.1 58.9 58.7 

Avg Slope 
Degrees 

6.59 2.57 0.43 5.10 1.36 6.84 5.48 

Avg Comp 37102.27 192.62 32.10 199.82 53.56 418.06 364.51 
% HM 
Lower 
Swash 

4.38 2.09 0.35 2.83 0.81 5.65 4.83 

& HM Mid 
Swash 

2.77 1.66 0.28 1.84 0.70 4.30 3.60 

% HM 
Upper 
Swash 

0.83 0.91 0.15 1.74 0.81 2.55 1.74 

% HM Dune 1.19 1.09 0.18 1.88 0.75 3.29 2.54 

Average 
%HM 

1.94 1.39 0.23 2.07 0.77 3.95 3.18 

 

 

Table 8 – The 2019 statistics analyzing the variance, standard deviation, standard error, mean, minimum, maximum, and 
    ranges of the mineral and benthic data collected from each survey (winter, spring, summer, fall).   

 

  



2020 Sand Survey Statistics 

 

 

 2020 Statistics 

  VAR STD STE mean Min Max Range 

Avg. Grain 
Size  

0.01 0.09 0.02 0.73 0.67 0.87 0.20 

Mean sand 
grain size 

lower 
swash 
(mm) 

0.15 0.39 0.07 1.07 0.64 1.55 0.91 

Mean sand 
grain size 
mid swash 

(mm) 

0.01 0.12 0.02 0.71 0.60 0.87 0.28 

Mean sand 
grain size 

upper 
swash 
(mm) 

0.01 0.08 0.01 0.54 0.46 0.62 0.16 

Mean sand 
grain size 

toe of dune 
(mm) 

0.05 0.22 0.04 0.62 0.41 0.84 0.43 

Total 
Benthos 

14789.1 121.6 20.3 111.0 15.4 288.9 273.4 

Avg. 
Species 

211.9 14.6 2.4 58.7 38.7 71.2 32.5 

Avg Slope 
Degrees 

1.08 1.04 0.17 5.30 4.07 6.59 2.53 

Avg Comp 475.21 21.80 3.63 175.99 143.88 190.96 47.08 
% HM 
Lower 
Swash 

0.03 0.17 0.03 0.64 0.45 0.87 0.42 

& HM Mid 
Swash 

0.01 0.10 0.02 0.87 0.75 0.98 0.22 

% HM 
Upper 
Swash 

0.15 0.39 0.06 1.37 1.02 1.74 0.73 

% HM Dune 4.06 2.01 0.34 6.21 3.95 8.23 4.28 

Average 
%HM 

0.26 0.51 0.09 2.27 1.62 2.73 1.11 

 
 

Table 9 – The 2020 statistics analyzing the variance, standard deviation, standard error, mean, minimum, maximum, and 
    ranges of the mineral and benthic data collected from each survey (winter, spring, summer, fall).   

  



2021 Sand Survey Statistics 

 

 2021 Statistics 

  VAR STD STE mean Min Max Range 
Avg. Grain 

Size  
0.01 0.11 0.02 0.66 0.54 0.77 0.22 

Mean sand 
grain size 

lower swash 
(mm) 

0.10 0.32 0.05 1.09 0.77 1.49 0.72 

Mean sand 
grain size 
mid swash 

(mm) 

0.01 0.12 0.02 0.62 0.51 0.76 0.25 

Mean sand 
grain size 

upper 
swash (mm) 

0.00 0.04 0.01 0.45 0.43 0.50 0.07 

Mean sand 
grain size 

toe of dune 
(mm) 

0.00 0.01 0.00 0.47 0.46 0.48 0.02 

Total 
Benthos 

1910996.3 1382.4 230.4 945.3 33.0 2967.0 2934.0 

Avg. 
Species 

466.6 21.6 3.6 14.8 0.5 46.4 45.8 

Avg Slope 
Degrees 

1.48 1.21 0.20 5.28 4.26 6.80 2.54 

Avg Comp 1123.24 33.51 5.59 187.43 137.60 210.21 72.61 

% HM Lower 
Swash 

6.30 2.51 0.42 2.26 1.16 6.01 4.86 

& HM Mid 
Swash 

13.73 3.70 0.62 3.14 1.70 8.67 6.96 

% HM Upper 
Swash 

19.28 4.39 0.73 4.04 3.16 10.44 7.28 

% HM Dune 214.55 14.65 2.44 11.67 3.09 33.50 30.41 
Average 

%HM 
39.43 6.28 1.05 5.28 2.28 14.66 12.38 

  

Table 10 – The 2021 statistics analyzing the variance, standard deviation, standard error, mean, minimum, maximum, and 
    ranges of the mineral and benthic data collected from each survey (winter, spring, summer, fall).   

 

  



Winter 2012-2021 Sand Survey Statistics 

 

 Winter 2012-2021 Statistics  

  VAR STD STE mean Min Max Range 
Avg. Grain 

Size  
0.03 0.18 0.03 0.72 0.54 1.02 0.48 

Mean sand 
grain size 

lower swash 
(mm) 

0.17 0.41 0.06 1.09 0.71 1.96 1.25 

Mean sand 
grain size 
mid swash 

(mm) 

0.02 0.13 0.02 0.66 0.51 0.89 0.38 

Mean sand 
grain size 

upper swash 
(mm) 

0.02 0.16 0.02 0.50 0.37 0.81 0.44 

Mean sand 
grain size toe 
of dune (mm) 

0.01 0.07 0.01 0.37 0.28 0.47 0.19 

Total 
Benthos 

6656.40 81.59 11.66 74.80 7.00 278.00 271.00 

Avg. Species 1.63 1.27 0.18 1.17 0.11 4.34 4.23 

Avg Slope 
Degrees 

1.17 1.08 0.15 3.97 1.36 5.13 3.77 

Avg Comp 2866.10 53.54 7.65 133.50 49.11 187.97 138.86 

% HM Lower 
Swash 

6.27 2.50 0.36 2.19 0.45 8.03 7.58 

% HM Mid 
Swash 

8.30 2.88 0.41 2.64 0.70 9.07 8.37 

% HM Upper 
Swash 

13.05 3.61 0.52 3.52 0.81 10.45 9.64 

% HM Dune 57.06 7.55 1.08 12.55 0.75 22.40 21.65 
Average 

%HM 
8.61 2.93 0.42 3.47 0.77 10.50 9.73 

 

 

Table 11 – The statistics analyzing the variance, standard deviation, standard error, mean, minimum, maximum, and 
      ranges of the mineral and benthic data collected from each winter survey between 2012-2021. 

 
  



Spring 2012-2021 Sand Survey Statistics 

 

 Spring 2012-2021 Statistics  

  VAR STD STE mean Min Max Range 
Avg. Grain 

Size  
0.01 0.10 0.02 0.78 0.65 0.89 0.24 

Mean sand 
grain size 

lower swash 
(mm) 

0.09 0.29 0.05 1.29 0.88 1.61 0.72 

Mean sand 
grain size 
mid swash 

(mm) 

0.02 0.15 0.02 0.81 0.65 1.09 0.44 

Mean sand 
grain size 

upper swash 
(mm) 

0.01 0.11 0.02 0.57 0.46 0.83 0.37 

Mean sand 
grain size toe 
of dune (mm) 

0.02 0.13 0.02 0.44 0.32 0.77 0.45 

Total 
Benthos 

25128.94 158.52 26.42 197.50 30.00 564.00 534.00 

Avg. Species 6.13 2.48 0.41 3.09 0.47 8.81 8.34 

Avg Slope 
Degrees 

0.37 0.61 0.10 4.27 3.58 5.45 1.87 

Avg Comp 1132.44 33.65 5.61 168.87 115.85 222.97 107.12 

% HM Lower 
Swash 

2.96 1.72 0.29 1.82 0.63 6.01 5.39 

% HM Mid 
Swash 

7.48 2.73 0.46 2.26 0.82 8.67 7.85 

% HM Upper 
Swash 

12.75 3.57 0.60 3.67 1.05 10.44 9.39 

% HM Dune 96.36 9.82 1.64 11.38 1.37 33.50 32.13 
Average 

%HM 
18.56 4.31 0.72 4.78 1.32 14.66 13.33 

 

 

Table 12 – The statistics analyzing the variance, standard deviation, standard error, mean, minimum, maximum, and 
      ranges of the mineral and benthic data collected from each spring survey between 2012-2021. 

  



Summer 2012-2021 Sand Survey Statistics 

 

 Summer 2012-2021 Statistics 

  VAR STD STE mean Min Max Range 
Avg. Grain 

Size  
0.01 0.09 0.01 0.73 0.63 0.87 0.24 

Mean sand 
grain size 

lower swash 
(mm) 

0.12 0.34 0.06 1.11 0.64 1.76 1.12 

Mean sand 
grain size 
mid swash 

(mm) 

0.01 0.09 0.02 0.64 0.47 0.78 0.31 

Mean sand 
grain size 

upper swash 
(mm) 

0.00 0.07 0.01 0.44 0.36 0.59 0.23 

Mean sand 
grain size toe 
of dune (mm) 

0.02 0.15 0.03 0.43 0.32 0.84 0.52 

Total 
Benthos 

679774.10 824.48 137.41 2222.10 825.00 3590.00 2765.00 

Avg. Species 165.96 12.88 2.15 34.72 12.89 56.09 43.20 

Avg Slope 
Degrees 

1.92 1.39 0.23 5.68 2.73 7.19 4.46 

Avg Comp 1254.82 35.42 5.90 176.52 114.81 239.62 124.81 

% HM Lower 
Swash 

9.26 3.04 0.51 2.90 0.59 10.19 9.59 

% HM Mid 
Swash 

11.23 3.35 0.56 3.24 0.82 11.05 10.23 

% HM Upper 
Swash 

25.17 5.02 0.84 4.94 0.62 17.42 16.79 

% HM Dune 76.72 8.76 1.46 10.83 2.12 28.74 26.61 
Average 

%HM 
10.54 3.25 0.54 4.16 1.40 10.98 9.59 

 

 

Table 13 – The statistics analyzing the variance, standard deviation, standard error, mean, minimum, maximum, and 
      ranges of the mineral and benthic data collected from each summer survey between 2012-2021. 

  



Fall 2012-2021 Sand Survey Statistics 

 

 Fall 2012-2021 Statistics 

  VAR STD STE mean Min Max Range 
Avg. Grain 

Size  
0.02 0.13 0.02 0.70 0.46 0.88 0.41 

Mean sand 
grain size 

lower swash 
(mm) 

0.12 0.34 0.06 1.15 0.63 1.55 0.93 

Mean sand 
grain size 
mid swash 

(mm) 

0.03 0.17 0.03 0.74 0.52 1.08 0.56 

Mean sand 
grain size 

upper swash 
(mm) 

0.02 0.13 0.02 0.53 0.30 0.78 0.48 

Mean sand 
grain size toe 
of dune (mm) 

0.01 0.08 0.01 0.39 0.32 0.58 0.26 

Total 
Benthos 

51192.90 226.26 37.71 605.30 324.00 1010.00 686.00 

Avg. Species 12.50 3.54 0.59 9.46 5.06 15.78 10.72 

Avg Slope 
Degrees 

1.81 1.34 0.22 4.70 2.85 6.84 3.98 

Avg Comp 2009.21 44.82 7.47 188.25 111.23 266.08 154.85 

% HM Lower 
Swash 

2.32 1.52 0.25 1.39 0.52 5.65 5.12 

% HM Mid 
Swash 

1.13 1.06 0.18 1.45 0.61 4.30 3.69 

% HM Upper 
Swash 

0.32 0.56 0.09 1.97 1.19 2.80 1.61 

% HM Dune 5.97 2.44 0.41 6.85 3.29 11.28 7.99 
Average 

%HM 
0.57 0.75 0.13 2.91 2.12 4.21 2.09 

 

 

Table 14 – The statistics analyzing the variance, standard deviation, standard error, mean, minimum, maximum, and 
      ranges of the mineral and benthic data collected from each fall survey between 2012-2021. 

 

  



Overall Sand Survey Statistics Between Seasons 

2012-2021 

 

 

 Overall Stats Between Seasons 2012-2021 

  VAR STD STE mean Min Max Range 
Avg. Grain 

Size  
0.02 0.13 0.01 0.73 0.46 1.02 0.56 

Mean sand 
grain size 

lower swash 
(mm) 

0.12 0.34 0.01 1.16 0.63 1.96 1.34 

Mean sand 
grain size 
mid swash 

(mm) 

0.02 0.15 0.01 0.71 0.47 1.09 0.62 

Mean sand 
grain size 

upper swash 
(mm) 

0.02 0.12 0.01 0.51 0.30 0.83 0.53 

Mean sand 
grain size toe 
of dune (mm) 

0.01 0.12 0.00 0.41 0.28 0.84 0.57 

Total 
Benthos 

931579.46 965.18 40.22 774.93 7.00 3590.00 3583.00 

Avg. Species 227.44 15.08 0.63 12.11 0.11 56.09 55.98 

Avg Slope 
Degrees 

1.64 1.28 0.05 4.65 1.36 7.19 5.83 

Avg Comp 2053.66 45.32 1.89 167.64 49.11 266.08 216.98 

% HM Lower 
Swash 

5.12 2.26 0.09 2.08 0.45 10.19 9.73 

% HM Mid 
Swash 

6.93 2.63 0.11 2.40 0.61 11.05 10.44 

% HM Upper 
Swash 

12.98 3.60 0.15 3.52 0.62 17.42 16.79 

% HM Dune 59.19 7.69 0.32 10.40 0.75 33.50 32.76 
Average 

%HM 
9.34 3.06 0.13 3.83 0.77 14.66 13.89 

 

Table 15 – The overall statistics analyzing the variance, standard deviation, standard error, mean, minimum, maximum, 

      and ranges of the mineral and benthic data collected from each survey between 2012-2021. 

 

 



APPENDIX B: 2021 Burn Regions for PINWR 
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Effectiveness of indicators for assessing the vulnerability of barrier 
island highways 
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A B S T R A C T   

Highways along barrier islands are highly susceptible to storm impacts like overwash, erosion, 
and island breaching. The present research evaluates the effectiveness of 14 morphological in-
dicators in predicting highway vulnerability to storm impacts from a data set of seven storms with 
documented roadway impacts. Multi-indicator functions were also developed and assessed. The 
research finds that distance from edge-of-pavement to dune toe, volume above mean high water 
between edge-of-pavement and ocean shoreline, distance from edge-of-pavement to ocean 
shoreline, and dune crest height above the road are the most skilled individual indicators of 
highway vulnerability. A multi-indicator function of dune toe elevation and distance from edge- 
of-pavement to dune toe is more skilled than any of the individual indicators that were evaluated. 
Some of these indicators can be projected to assess future vulnerability, as well. The results 
convey the value of geomorphology-based indicators and their potential in larger-scale coastal 
infrastructure vulnerability assessments.   

1. Introduction 

Coastal areas are attractive places to live and work, drawing in a large portion of the human population. Small and Nicholls (2003) 
estimated that 1.2 billion people live within 80.5 km of a coastline, which Neumann et al. (2015) predicted will grow. Due to their 
proximity to the ocean, coastal communities are susceptible to a unique combination of processes that impact infrastructure, such as 
tides, storm surge, and waves. The regularity and severity of impacts that occur are likely to worsen into the future due to sea level rise 
(SLR) (Mimura, 2013; Enríquez et al., 2019) and increasing occurrences of extreme weather events (USGCRP, 2018; EASAC, 2013). 
Barrier islands face these hazards, in addition to island breaching. Island breaching occurs when elevated soundside water levels and 
oceanside wave erosion cut new inlets through the island (Safak, Warner, and List, 2016). In the context of this paper, the vulnerability 
of infrastructure is defined as the susceptibility to damage or reduced functionality due to these coastal hazards. Engineers and 
stakeholders use coastal vulnerability assessments to identify the components of infrastructure that are most vulnerable to storm 
impacts, which helps them strategically plan projects. Methods to assess the vulnerability of infrastructure can include modeling of 
inundation processes that inundate infrastructure (Li, Lin, and Burks-Copes, 2013; Kafalenos et al., 2008); empirical parameterization 
of different erosion regimes (Stockdon, Plant, and Sallenger, 2009); computation of vulnerability indices using a combination of 
geomorphology and process-based variables (Francis et al., 2019); and computation of simple, geomorphology-based indicators 
(Velasquez-Montoya et al., 2021). 
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Geomorphology-based indicators used in previous studies are based on logical understanding of coastal processes and experience 
with previous events. However, little work has been done to evaluate the effectiveness of a wide range of coastal vulnerability in-
dicators with multiple real-world storms. The aim of the present study is to compare the success of a wide range of vulnerability 
indicators in predicting coastal highway impacts from a series of seven storm events that were recorded along the North Carolina coast. 
Documented storm impacts to the highway were used to directly assess the performance of various vulnerability indicators, with the 
frequency of impacts being a proxy for observed vulnerability. This proxy was chosen, as opposed to another proxy like severity of 
impacts, because the observed storm impacts led to roadway closure for all of the storms in the dataset. Severe physical damage to the 
roadway occurred in only a few of the storms. Roadway closure leads to residents of the barrier island communities being unable to 
access hospitals and other emergency services available off-island. This research additionally tests the use of weighted sums of multiple 
indicators on improving the accuracy of predicting coastal highway vulnerability. Empirically driven optimization methods were used 
to objectively identify the relative contribution of each indicator to the total level of vulnerability. 

This research focuses on assessing vulnerability at a small spatial scale for project planning and monitoring purposes. Therefore, 
larger-scale process variables like wave climate and tidal range did not vary over the study area, and the research’s scope is limited 
solely to geomorphology-based indicators because their spatial variability is assumed to be the main factor in vulnerability. While on a 
larger spatial scale factors like the condition of the roadway and/or the criticality of the roadway may also contribute to vulnerability, 
for this study we are focused on a unique situation where one roadway connects multiple barrier island communities to the mainland. It 
is assumed that the baseline pavement condition is similar along the analyzed stretch of roadway. 

2. Literature review 

The purpose of coastal vulnerability assessments is to identify infrastructure that is vulnerable to long- and short-term storm 
impacts, which informs engineers and policy makers. Numerical hydrodynamic and sediment-transport models have been used to 
identify vulnerable infrastructure under different storm and SLR cases (Li, Lin, and Burks-Copes, 2013). It is computationally intensive 
to map vulnerability at a fine resolution with numerical morphodynamic models, however, so their usage at regional or larger scales or 
for periodic vulnerability analyses may be infeasible. “Bathtub” style mapping is an approach, which intersects water levels with 
highway infrastructure to determine the areas inundated for a given scenario (FHWA, 2012). Studies have used bathtub mapping to 
illustrate long-term projections of coastal highway vulnerability by modeling the still water-level, including storm surge and SLR, and 
mapping the consequently inundated roads (Kafalenos et al., 2008). This method allowed researchers to identify vulnerable stretches 
of road at a regional level, between Galveston, TX and Mobile, AL, USA (Kafalenos et al., 2008). The USGS National Assessment of 
Coastal Change Hazards program (Stockdon, Plant, and Sallenger, 2009) combined beach and dune topography, storm surge model 
outputs, and parameterized wave runup (Stockdon et al., 2006) to give a probabilistic representation of dune vulnerability across US 
coasts based on the predicted severity of erosion. The Coastal Vulnerability Index (CVI) (Gornitz et al., 1994) can be adapted to a given 
study region and purpose, such as to classify roads vulnerable to erosion across Hawaii, USA, by selecting the most relevant variables 
(Francis et al., 2019). The CVI is a composite of discretized classes of geological, morphological, and process-based variables, such as 
landform type, coastal slope, relative sea level change, rock type, tidal range, and wave climate (Gornitz et al., 1994). Performance of 
an index like the CVI can be sporadic depending on the definitions of risk classes for each variable (Koroglu et al., 2019). In-
consistencies in the definition of risk classes for each variable can lead to significant differences in the resultant calculated CVI and, 
thus, vulnerable areas (Koroglu et al., 2019). For a study area that is small relative to the scale that physical process variables vary, 
morphological indicators alone can be used to assess vulnerability (Velasquez-Montoya et al., 2021). The North Carolina Department 
of Transportation’s (NCDOT) Coastal Monitoring Program (CMP) uses simple geomorphology-based indicators like island width, dune 
crest height above the road, and distance from edge-of-pavement (EOP) to ocean shore to assess the vulnerability of a barrier island 
highway off the coast of North Carolina, USA on a cross-shore transect basis (Velasquez-Montoya et al., 2021). The study additionally 
predicts future vulnerability at a decadal time scale by using a linear regression of shoreline positions, from which EOP to ocean shore 
can be calculated (Velasquez-Montoya et al., 2021). 

Simple indicators of coastal highway vulnerability are valuable because they can be easily computed with updated topography, 
enabling researchers to monitor spatial and temporal changes in vulnerability. There is limited research on the effectiveness of 
geomorphology-based vulnerability indicators across a range of storms because robust datasets of pre-storm topography along with 
documentation of the precise locations of post-storm impacts are scarce. Without data for precise locations of storm impacts to 
infrastructure, past research has largely focused on effectiveness of indicators from the perspective of dune well-being under the 
assumption that dunes are the primary protection for infrastructure behind them. Island width, height and width of the dune fields, 
vegetation type, distance from the dunes to the ocean, and dune field continuity explained the most variation in dune survival versus 
failure after two hurricanes that affected a FL, USA barrier island (Claudino-Sales, Wang, and Horwitz, 2008). Controls of longshore 
variation in dune changes can depend on characteristics of the study area. Beuzen et al. (2019) sought to determine the major 
geomorphological controls of dune and beach berm erosion across a wide study area covering 400 km of southeast Australian coast. 
Erosion of beach berms and dunes increased as exposure to the incident waves increased; berm erosion was controlled by the pre-storm 
volume of the berm, such that berms with high pre-storm volumes led to high erosion; and dune erosion was equally linked to the width 
of the berm and the dune toe elevation, such that wide berms and elevated dune toes resulted in low erosion (Beuzen et al., 2019). In a 
wave flume, under experimental conditions, the geometry that most effectively limited overwash was a berm with dune configuration 
(Figlus et al., 2011). A berm with the dune led to less dune volume loss, compared to wide dune and sloping beach and dune con-
figurations (Figlus et al., 2011), which agreed with results of Beuzen et al. (2019). Judge, Overton, and Fisher (2003) tested the 
effectiveness of using empirical models of expected dune erosion (Hallermeier and Rhodes, 1988; Kriebel et al., 1996) as dune 
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vulnerability indicators, assessed the Storm Impact Scale (Sallenger, 2000), and described two new dune vulnerability indicators, dune 
cross-sectional centroid and mass moment of inertia. They found the mass moment of inertia compared to water level with setup had 
the most success at predicting dune failure versus survival (Judge, Overton, and Fisher, 2003). While failure of a beach and dune 
system does imply that infrastructure behind the dunes are affected, there are other processes, like infiltration and frictional energy 
losses (Donnelly et al., 2009), that affect the level of infrastructure vulnerability. There is limited research that directly analyzes the 
relationship between geomorphology and infrastructure vulnerability. An analysis of the geomorphological controls of road impacts 
ascertained that offshore bathymetry, dune height, and island width were major factors (Houser, 2009). The analysis was only con-
cerned with locations that were physically damaged during two hurricanes, therefore more common impacts that occur to coastal 
highways like overwash were excluded (Houser, 2009). 

3. Study area 

Barrier islands off the coast of North Carolina are crucial ecosystems, popular tourist destinations, and desirable places to live. The 
NC Division of Coastal Management (NCDCM) found that Dare County accounts for $957 million USD per year of the state’s travel 
expenditures, which is approximately 5% of North Carolina’s total travel income (NCDCM, 2016). The region attracts a significant 
amount of research attention due to its dynamic geography and plethora of biodiversity (Sciaudone et al., 2016; Velasquez-Montoya 
and Overton, 2017; Pfaller et al., 2020; Levine et al., 2017; Halls and Randall, 2018, and others). 

Hatteras Island—the northern tip locally known as Pea Island—is a barrier island in Dare County that is host to the communities of 
Rodanthe, Waves, and Salvo, as well as the 5,834 acre Pea Island National Wildlife Refuge (USFWS, 2020). Oregon Inlet to the north 

Fig. 1. Map showing (a) location along the southeastern coast of the U.S., (b) locations of water level (NOAA 8651370) and wave (Wave Infor-
mation Study 63224) data employed in this research, and (c) extent of study area along Pea Island, NC. Note that at the scale of this figure the 
Oregon Inlet Waverider Buoy (NDBC 44095) is approximately co-located with the WIS station shown. 
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separates the island from the northern Outer Banks and the Pamlico Sound lies between the mainland and the island (Fig. 1). NC-12 is 
the sole highway that connects Hatteras Island and its communities with the northern Outer Banks and serves as the only evacuation 
route. This makes reliability of the highway between Oregon Inlet and Rodanthe of critical importance. One of the most common 
impacts to NC-12 that causes closures is sand and ocean overwash, due to a combination of elevated water levels and runup of waves 
that can overtop dunes. The Final Environmental Impact Statement for the replacement of the bridge over Oregon Inlet noted the high 
frequency of highway maintenance activities required along Pea Island to move sand off the road (NCDOT, 2008). Another common 
impact to the road is flooding, which occurs from the bay (sound) side when winds drive up sound water levels. Flooding can make the 
road hazardous to traverse, sometimes requiring NCDOT to temporarily close the road. Island breaching is the impact which occurs 
most rarely but that is most severe. Most recently, breaches occurred in two locations on Hatteras Island during hurricane Irene in 2011 
(Velasquez-Montoya et al., 2018). At each location where breaching occurred, the road was damaged. More frequent road impacts are 
expected along the study area because of increasing storm events (USGCRP, 2018) and predicted SLR between 10.9 and 18.5 cm by 
2045 at the nearby Oregon Inlet (NC Coastal Resources Commission Science Panel, 2015). Because of North Carolina’s strict laws 
prohibiting structures on the oceanfront, structural (hardening) measures to protect the roadway (i.e. revetments, seawalls, or similar) 
are not allowed (NC Coastal Area Management Act § 113A-115.1.). 

Since 2010, NCDOT has sponsored a Coastal Monitoring Program in place to assess and predict the vulnerability of the 21.1 km 
stretch of highway to short- and longer-term hazards (Velasquez-Montoya et al., 2021). A significant part of the CMP involves long- 
term data collection in the form of bimonthly aerial photogrammetry and quarterly digital elevation models (DEMs). Because of this 
program, there is an extensive set of imagery and topographic data in this study area, which provides an opportunity to assess the 
performance of morphological indicators at predicting infrastructure vulnerability. In the present study, the focus is on impacts to 
highway NC-12, but the methods are applicable to coastal infrastructure in other areas with similar geomorphological settings (i.e. 
barrier islands with relatively straight and continuous coastlines). 

4. Methods and data 

Binary classification metrics were used to assess and compare indicators. Binary classification metrics use an accounting of correct 
and incorrect predictions, shown as a confusion matrix, as input. Observed storm impacts to the road were identified by comparing pre- 
and post-storm aerial imagery, and 14 geomorphological parameters were used as indicators in developing pre-storm vulnerability 
predictions. To develop functions of multiple indicators, optimization problems were formulated based on the same data that were 
used for the indicator evaluations. The performance of alternative solvers was explored, and one solver was selected that best fit the 
needs of this research. Fig. 2 illustrates the methodology workflow. 

4.1. Binary classification 

Binary classification involves predicting the classes of items with two possible outcomes or types. Predicting highway vulnerability 
is a binary classification problem: transects are classified as vulnerable, or not. In the present binary classification model, the indicators 
are used to separate transects along the highway into vulnerable and not-vulnerable classes, depending on the indicator values relative 
to a specified threshold. 

Binary classification model metrics were used to measure each indicator’s performance, allowing for comparison between the 
various morphological parameters. Binary classification metrics are calculated using a confusion matrix of the different outcomes and 

Fig. 2. Flowchart of steps in methodology.  

A. Behr et al.                                                                                                                                                                                                           



Transportation Research Part D 105 (2022) 103234

5

the proportions of correct and incorrect predictions. For example, in this case of highway vulnerability classification, if a certain 
transect was predicted to be vulnerable, that prediction would be a “true positive” if the transect was observed to be vulnerable during 
a storm, and a “false positive” if the transect was not observed to be vulnerable. “Positive” refers to the class that is identified or 
predicted. The converse is true for transects predicted to not be vulnerable. These are “true negatives” and “false negatives”. Many 
binary classification model metrics are calculated using different combinations of the total numbers of these “true positives”, “true 
negatives”, “false positives”, and “false negatives”. An example of the confusion matrix including all of the possible outcomes that 
result from an indicator evaluation is shown in Table 1. 

Accuracy (Eq. (1)) represents the percentage of true predictions. Accuracy is a suitable metric for balanced class problems, where 
the two classes occur at approximately the same frequency. However, if the problem is imbalanced, such that one class occurs much 
more frequently than the other, accuracy can be skewed by a model that is biased towards the dominant class (Provost, Fawcett, and 
Kohavi, 1998). 

Other metrics used to evaluate binary classification models include precision, recall, F-score, area under the receiver-operating- 
characteristic curve (ROC AUC), and area under the precision-recall curve. Precision (Eq. (2)) calculates the percentage of the posi-
tive class that were correctly predicted out of all items predicted to be in the positive class. Recall (Eq. (3)) computes the percentage of 
true positives out of all of the items in the positive class. Precision and recall are opposed measurements, with the maximum of one 
being the minimum of the other. If precision and recall are given an equal weight, the harmonic mean of a model’s precision and recall 
is calculated as the F1-Score (Eq. (4)). The F1-Score, therefore, takes into account both metrics. 

Accuracy, precision, recall, and F1-Score all are threshold-sensitive because they change depending on the threshold that is used in 
the classification model. Being threshold-sensitive is a drawback when the goal in assessing a binary classification model is to give an 
overall determination of skill. The area under precision-recall curve (PR AUC) and area under receiver-operating-characteristics curve 
(ROC AUC) are metrics that are both independent of threshold value and appropriate for imbalanced class problems (Davis and 
Goadrich, 2006). The ROC curve illustrates the inverse relationship between the rates of correctly predicting the positive class and 
incorrectly predicting the negative class, and the PR curve illustrates the tradeoff between precision and recall at different thresholds 
(Davis and Goadrich, 2006). Davis and Goadrich (2006) argued that, for imbalanced class problems, the PR AUC can be a more 
appropriate and robust metric than ROC AUC. 

Binary classification model metrics are relative measurements, and there are no defined bounds for “good” or “bad” models. 
However, the metrics do allow for comparison among models or binary indicators applied to a mutual problem. For this study, F1- 
Score and PR AUC metrics were used to compare the effectiveness of vulnerability indicators because predicting highway vulnera-
bility is an imbalanced class problem, where the more important class (impacted road transect) occurs infrequently. F1-Score and PR 
AUC are both compositions of precision and recall scores. Thus, they put the most weight on correctly predicting vulnerability (TP) 
while also including a cost for incorrect classifications (FP, FN). 

Accuracy =
TP + TN

TP + TN + FP + FN
(1)  

Precision =
TP

TP + FP
(2) 

Table 1 
Confusion matrix of vulnerability classifications.   

Predicted Vulnerable Predicted Not Vulnerable 

Observed Vulnerable True Positives False Negatives 
Observed Not Vulnerable False Positives True Negatives  

Fig. 3. Storm impacts to the highway after Hurricane Irene in August 2011: (a) overwash sand covered road; (b) ocean-side erosion damaged 
pavement; (c) island breach damaged pavement. 
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Recall =
TP

TP + FN
(3)  

F1 − Score =
2*Precision*Recall
Precision + Recall

(4)  

where 
TP = Number of true positives, TN = Number of true negatives, FP = Number of false positives, and FN = Number of false negatives. 

4.2. Roadway storm impacts 

Observed highway vulnerability was quantified using the frequency of storm impacts that occurred over the course of seven storms. 
Storm impacts to the road were digitized by visually comparing pre- and post-storm georeferenced aerial imagery, using ArcGIS. The 
three types of impacts observed are shown in Fig. 3, including overwash, ocean-side erosion damaged pavement, and island breach 
damaged pavement. To avoid considering occurrences of windblown sand on the road as ocean overwash, it was required that the road 
should be at least 50% obscured by sand coverage at a specific transect for it to be considered impacted by ocean overwash. An example 
of the road being highly obscured by sand is shown in Fig. 3(a). Instances of damage to the pavement due to ocean-side erosion and 
island breaching, shown in Fig. 3(b) and Fig. 3(c), respectively, were also visually identified. Because shadows or water coverage could 
be misinterpreted as missing or damaged pavement, these types of impacts were verified with NC DOT maintenance engineers to 
confirm that documented damages did occur during the specific storms. In the available aerial photographs, observed impacts from the 
sound side were limited to roadway damage from breaching. The most frequent type of sound-side impact within the study area is 
flooding, however, this impact cannot be easily observed with post-storm aerial imagery because it has generally receded by the time of 
the photography. 

To describe the storm climate of the study area and contextualize the storms used to locate impacts and evaluate indicators, return 
period analyses were performed on three different wave and water level parameters. Storm events were identified from the wave 
height time series by using a significant wave height of > 2 m for > 8 h criterion. Then, the maximum significant wave heights, non- 
tidal residuals (surge), and storm durations were collected for each of these storm events. The Traditional Gumbel plotting position 
formula was applied to this partial duration series, and a log-linear trend line was fit to the data to identify the relationship between 
each parameter and its respective return period, as described in the U.S. Army Corps of Engineers (USACE) Coastal Engineering Manual 
(USACE, 2008). 

4.3. Vulnerability indicators 

Using ArcGIS, geomorphological features were extracted from DEMs and aerial imagery for the closest available date prior to each 
storm with documented storm impacts. With extracted coastal landforms, various indicator values were determined on a transect basis 

Fig. 4. Example of dune crest and dune toe extraction from cross-shore profile with a semi-automated algorithm.  
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across the study area. Ocean and inlet shorelines along the study area were digitized using the wet-dry line method (Dolan et al., 1980). 
Aerial imagery was examined at 1:1200 scale to maintain a consistent degree of precision while digitizing the shoreline. Estuarine 
shorelines were digitized by following the visible edge of the vegetation when possible, or the wet-dry line along sandy areas. Estuarine 
shorelines were digitized at 1:800 scale because the marsh edges are generally more intricate than the ocean shoreline’s wet-dry line. 
Dune crests (maximum elevations) were extracted from cross-shore profiles at each transect by an algorithm that selects the highest 
elevation point between the road edge of pavement and shoreline, as illustrated in Fig. 4. Dune toes were extracted from the cross- 
shore profiles using an algorithm that picks the point on the profile with the greatest deviation between the terrain and a line from 
the dune crest to shoreline (Fig. 4). The highway’s centerline elevations were interpolated at each transect from the DEM surface using 
GIS tools. 

Using the extracted coastal features, the following geomorphological parameters were calculated on a transect basis so the pa-
rameters could then be tested as indicators of road vulnerability to storm impacts:  

1. Island width from the estuary shoreline to the ocean shoreline (Island Width)  
2. Dune crest elevation relative to NAVD 88 (Dune Crest Elevation)  
3. Road elevation relative to NAVD 88 (Road Elevation)  
4. Difference in elevation between the dune crest and the road (Dune Crest Height Above Road)  
5. Three-transect moving averaged Dune Crest Height Above Road (Smoothed Dune Crest Height Above Road)  
6. Distance from road edge-of-pavement (EOP) to ocean shoreline (EOP to Ocean Shore)  
7. Distance from road EOP to estuarine shoreline (EOP to Estuary Shore)  
8. Distance from road EOP to dune toe (EOP to Dune Toe)  
9. Volume above MHW between EOP and ocean shoreline (Volume Per Length)  

10. Dune toe elevation relative to NAVD 88 (Dune Toe Elevation)  
11. Distance from the dune toe to the ocean shoreline (Beach Width)  
12. Beach slope found according to the USGS 2 point method (Doran, Long, and Overbeck, 2015) (Beach Slope)  
13. The reciprocal of beach slope (Inverse Beach Slope)  
14. The angular difference between shore-normal orientation and the weighted mean wave direction. To calculate the weighted 

mean wave direction, similar to the weighted mean wind direction used by Ortiz, Roy, and Edmonds (2017), the data were 
filtered to only include significant wave heights>2 m, and wave direction was weighted by the square of significant wave height 
to better represent the directional distribution of wave energy. (Shore Orientation) 

It was assumed that wave parameters for purposes of computing the Shore Orientation indicator could be extracted at the nearest 
hindcast station or buoy and approximated along the entire study area. This is because the bathymetry is relatively consistent 
alongshore and the study area is only 21 km in length. 

Fig. 5 shows a schematic of the primary geomorphological parameters tested. Applying each indicator, each transect was predicted 
to be vulnerable or not vulnerable to storm impacts. These vulnerability predictions were compared with observed vulnerability to 
determine whether each prediction was correct or incorrect. F1-Score (Eq. (4)) and PR AUC were used to evaluate indicators because 
predicting vulnerability is an imbalanced class problem with the positive class (road impacts) occurring in 36% of transects during 
storms in this dataset. An optimal threshold was found iteratively for each indicator based on the F1-Score, with the optimal threshold 

Fig. 5. Schematic of main parameters tested as indicators of highway vulnerability: Island Width (IW), Dune Crest Height Above Road (DCHAR), 
EOP to Ocean Shore (EOPOS), EOP to Estuary Shore (EOPES), EOP to Dune Toe (EOPDT), Volume Per Length (VPL), Dune Toe Elevation (DTE), 
Beach Slope (BS), Beach Width (BW), and Shore Orientation (SO). 
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for each indicator corresponding to the max F1-Score of the indicator. The optimal threshold found in this way was determined from 
the impacts caused by storms in this dataset. Thus, the F1-Score and optimal threshold could differ for an alternative set of storms of 
different severity. The PR AUC was considered the most important metric of indicator skill because it is composed of the skill at all 
thresholds, meaning it is independent of a single threshold value. Being threshold-independent makes the PR AUC a convenient way to 
compare different indicators. An indicator with a greater PR AUC is better at ranking transects from most vulnerable to least 
vulnerable, which would make it a more valuable indicator. Additionally, a high PR AUC implies that an indicator’s performance is less 
sensitive to the chosen threshold value. This quality is important because indicator thresholds are set based on the available data. If an 
indicator’s performance is less sensitive to the threshold, it should be better at predicting vulnerability for storms outside of the 
dataset, in a validation setting. 

4.4. Functions of multiple indicators 

It was hypothesized that a function of multiple indicators could more accurately predict vulnerability than any one indicator on its 
own. To incorporate indicators as continuous variables that could each provide unique information about the vulnerability at each 
transect, a weighted linear function (Eq. (5)) was explored. The indicator values are known geomorphological parameters that are 
collected at each transect, and the vulnerability function’s threshold is set to an arbitrary value without physical meaning. Thus, the 
only unknown parameters in the vulnerability function are the weighting coefficients. The weighting coefficients are needed because 
the indicators can vary in units, scale, and relative importance. The weighting coefficients also may change depending on the com-
bination of indicators featured in the function. Optimization problems were set up for assorted combinations of indicators to relate 
unknown coefficients of assumed vulnerability functions (Eq. (5)) to resultant confusion matrices, with the goal of maximizing the F1- 
Score. Fig. 6 is a flowchart that summarizes the optimization setup. 

The optimization problems were solved using a Mixed Integer Linear Programming (MILP) solver because the problems included a 
combination of binary and continuous variables. The MILP solver requires that the objective function be linear, so F1-Score was 
linearized (Eq. (6)). When given enough constraints and time, the MILP solver can converge on a deterministic solution (Integer 
Programming). Genetic Algorithm (GA) is another solver for optimization problems featuring a mixture of continuous and binary 
variables. The GA solver takes an evolutionary approach to iteratively test variables and adjust parameters based on the value of the 
objective function at each generation. The solver is more flexible, allowing for a non-linear objective function, such as the full F1-Score 
(Eq. (4)) (Genetic Algorithm). In preliminary tests of the solvers, there were not significant differences in the weights determined with 
the GA solver when compared with results from the MILP solver, despite the MILP solver’s linearized objective function (Eq. (6)). The 
MILP solver was chosen because it results in a more definitive solution than the GA solver, for which the solution is not guaranteed. 
Optimization problems were solved for many different combinations of indicators and each of these subsequent functions were then 
evaluated using the binary classification model metrics described above. 

F(indicator1, indicator2, indicator3) = A*indicator1 + B*indicator2 + C*indicator3 (5)  

where: 
indicator1, indicator2, indicator3 are indicator values, and A, B, C are coefficients that scale the indicator values such that they 

contribute to the overall vulnerability function’s value. 
IF F(indicator1, indicator2, indicator3) < Threshold, THEN transect is vulnerable. 

Linearized F1 − Score = 2*TP − FP − FN (6)  

where: 
TP = Number of true positives, FP = Number of false positives, and FN = Number of false negatives. 

Fig. 6. Optimization process to solve for weights used in multi-indicator functions. Inputs going in to MILP solver include data, constraints, and 
unknown variables, and weighting coefficients are output. 
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4.5. Data sets 

Raster data consisting of 76.2 cm resolution digital elevation models and 15.2 cm resolution aerial imagery were sourced from 
NCDOT’s Coastal Monitoring Program (Velasquez-Montoya, 2021). These DEMs were selected based on the time of collection relative 
to storms that affected the study area. The DEMs cover the entire Coastal Monitoring Program’s study area, from north of Oregon Inlet, 
southward to the town of Rodanthe (Fig. 1). A subset of previously established transects developed for the Coastal Monitoring Program 
was used in this study. These transects are spaced at 45.7 m and are approximately shore-perpendicular. Fig. 1 shows the northern and 
southernmost transects comprising the study area. 

Post-storm aerial images with 30.5 cm resolution were sourced from the National Oceanic and Atmospheric Administration’s 
(NOAA) Emergency Response Imagery Index (NOAA, 2020). Table 2 details the data sets employed to identify impacts in the present 
study, as well as the dates of the storms. 

The timing of imagery relative to the date of each storm could potentially influence the quality of data collection efforts, due to 
possible pre-storm morphological changes and because with each passing day after the storm, NCDOT would have had additional 
opportunities to clean sand from the road and make repairs. To alleviate this as much as possible, pre-storm and post-storm imagery, as 
well as DEMs, were compared with special attention to differences, like the appearance of overwash fans on the sound side of the road, 
that would suggest road impact. 

The Duck, NC Field Research Facility and U.S. Army Corps of Engineers Wave Information Studies (WIS) station 63224 were the 
closest sources of long-term ocean-side water level and wave data, respectively. Wave and water level data from 1980 to 2018 were 
collected from WIS station 63224 and the NOAA water level gauge at Duck, NC (Station 8651370). The WIS data is a hindcast product 
produced by the Coastal and Hydraulics Laboratory Engineer Research and Development Center (Tracy and Cialone, 2006). 

Additional significant wave height and dominant wave period data were sourced from the NOAA National Data Buoy Center’s 
station 44095 near Oregon Inlet for the year 2019. This station provided an observational time series of wave conditions near the study 
area going back to 2012 (NOAA, 2018). 

5. Results 

This section details the results of the present study analysis. The return period analysis results provide context for the storms in the 
data set. The spatial distribution of the storm impacts from the entire storm data set is summarized to give the reader an idea of the 
degree of observed vulnerability across the study area. Single vulnerability indicators are evaluated, followed by functions of multiple 
indicators. 

5.1. Return period analysis 

The majority of the storms used in this study were hurricanes because of the availability of NOAA post-storm aerial imagery of these 
events; however, there were also two winter storms, or “nor’easters”, that were included in the dataset. The nor’easters, which 
occurred in February 2016 and March 2018, were included because post-storm aerial imagery from NC DOT was available to identify 
impacts. 

The suite of storms used to evaluate the vulnerability indicators fell within a range of return periods for surge, duration, and wave 

Table 2 
Data sets used to evaluate storm impacts and vulnerability indicator performance.  

Storm Data Set Dates Data Source Notes 

Hurricane Irene, 27 August 2011 DEM 2 August 2011 NC DOT Pre-Storm 
Hurricane Irene, 27 August 2011 Aerial Imagery 2 August 2011 NC DOT Pre-Storm 
Hurricane Irene, 27 August 2011 Aerial Imagery 28 August 2011 NC DOT Post-Storm 
Hurricane Sandy, 26 October 2012 DEM 11 October 2012 NC DOT Pre-Storm 
Hurricane Sandy, 26 October 2012 Aerial Imagery 11 October 2012 NC DOT Pre-Storm 
Hurricane Sandy, 26 October 2012 Aerial Imagery 31 October 2012 NC DOT Post-Storm 
Hurricane Arthur, 4 July 2014 DEM 12 April 2014 NC DOT Pre-Storm 
Hurricane Arthur, 4 July 2014 Aerial Imagery 2 June 2014 NC DOT Pre-Storm 
Hurricane Arthur, 4 July 2014 Aerial Imagery 4 July 2014 NOAA Post-Storm 
Nor’easter, 7 February 2016 DEM 7 October 2015 NC DOT Pre-Storm 
Nor’easter, 7 February 2016 Aerial Imagery 8 December 2015 NC DOT Pre-Storm 
Nor’easter, 7 February 2016 Aerial Imagery 8 February 2016 NC DOT Post-Storm 
Hurricane Matthew, 5 October 2016 DEM 22 August 2016 NC DOT Pre-Storm 
Hurricane Matthew, 5 October 2016 Aerial Imagery 22 August 2016 NC DOT Pre-Storm 
Hurricane Matthew, 5 October 2016 Aerial Imagery 10 October 2016 NOAA Post-Storm 
Nor’easter, 2 March 2018 DEM 9 February 2018 NC DOT Pre-Storm 
Nor’easter, 2 March 2018 Aerial Imagery 9 February 2018 NC DOT Pre-Storm 
Nor’easter, 2 March 2018 Aerial Imagery 26 March 2018 NOAA Post-Storm 
Hurricane Dorian, 5 September 2019 DEM 29 August 2019 NC DOT Pre-Storm 
Hurricane Dorian, 5 September 2019 Aerial Imagery 29 August 2019 NC DOT Pre-Storm 
Hurricane Dorian, 5 September 2019 Aerial Imagery 7 September 2019 NOAA Post-Storm  
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height characteristics, as shown in Fig. 7. Significant wave height return periods ranged from 0.9 to 21 years, storm surge return 
periods ranged from 0.3 and 24 years, and storm duration return periods ranged from 0.1 and 5 years. Hurricane Dorian occurred in 
2019, which was not encompassed by WIS hindcast data (1980–2018); therefore, the maximum significant wave height for this 
hurricane was taken from the Oregon Inlet Waverider Buoy (Station 44095). The significant wave height was shoaled from 18.4 m to 
15.0 m depth using linear wave theory to make the buoy data compatible with the return period analysis that was performed using WIS 
data. 

5.2. Distribution of observed vulnerability 

As shown in Fig. 8, the number of storm impacts that occurred per transect ranged from zero (no storms caused impacts) to seven 
(all storms caused impacts). Impacts were most frequently observed in the northern third of the study area and in two smaller regions 
near the southern portion of the study area. Near the center of the study area, a temporary bridge was constructed shortly after 
hurricane Irene formed a breach in August of 2011 (Velasquez-Montoya et al., 2018). This temporary bridge was replaced by an 
interim structure (footprint indicated in Fig. 8) which opened in November 2017. Impacts to the road in this section were lessened after 
bridge construction, and afterwards, the few occurrences of impacts were mainly caused by sand washing onto the bridge from the 
adjacent areas. 

5.3. Single indicators 

Variability in PR AUC arises mainly due to differences in storms and the magnitude of impacts caused. Storms with more impacts 
result in greater PR AUC scores, in general, because there is a greater chance to correctly identify true positives. To account for this, a 
random indicator was simulated and its AU PRC confidence interval was calculated to give an idea of the uncertainty in the AU PRC 
which stems from variability in the storms’ severities. Because a completely random indicator could predict the positive class—road 
impacts—at the rate that they occur (approximately 36%), and because there is some uncertainty around that mean, indicators were 
considered completely unskilled if their PR AUC was less than 0.47 (95% confidence interval for a random indicator). 

Table 3 summarizes the evaluation results with each indicator ranked in order of most to least skill based on the PR AUC metric. 
Several indicators were found to be good predictors of vulnerability. The most skilled indicator was the EOP to Dune Toe based on its 

Fig. 7. Return period analyses shown by blue dots and black-dotted best-fit line for each parameter: (a) Significant Wave Height; (b) Surge; and (c) 
Total Water Level. The return periods of the seven storms in the data set are shown by red triangles. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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PR AUC metric of 0.77, as well as its max F1-Score of 0.79. The threshold optimization results suggested that EOP to Dune Toe most 
accurately predicted vulnerability with a threshold value of 302 m. Volume Per Length was the second most skilled with a PR AUC of 
0.74. The third most skilled indicator, EOP to Ocean Shore, was close behind with a PR AUC of 0.73. Despite its lower PR AUC, the F1- 
Score of EOP to Ocean Shore was slightly better than that of Volume Per Length. This suggests that EOP to Ocean Shore is more 
sensitive to the threshold value, but with its optimal threshold, it was marginally better at predicting vulnerability than the Volume Per 
Length. 

Several different representations of the maximum elevation between the road and the ocean shoreline (dune crest) were tested. 
Dune Crest Height Above the Road was slightly more skilled than Dune Crest Elevation, which suggests that the road elevation has 
some influence on the level of vulnerability. Specifically, this result suggests to a minor extent that the elevation of the road may be 
inversely related to the highway’s level of vulnerability. Road Elevation had a very low PR AUC of 0.27, which is only 8% greater than 
the bottom of the 95% confidence interval for a random indicator. Predictors found to have less skill than a random predictor are called 
naïve because they are more indicative of the negative class, which further suggests that Road Elevation may be inversely related to 
road vulnerability. It was found that Smoothed Dune Crest Height Above the Road is a better predictor of vulnerability than Dune Crest 
Height Above the Road, which is likely because a 3-transect moving average allows for consideration of the state of nearby transects. 

Fig. 8. Distribution of highway impacts along the study area.  

Table 3 
Indicators ranked by skill based on PR AUC.  

Indicator Threshold for max F1-score Max F1-score PR AUC 

EOP to Dune Toe 92 m  0.79  0.77 
Volume Per Length 11.1 m3/m  0.72  0.74 
EOP to Ocean Shore 126.8 m  0.73  0.73 
Smoothed Dune Crest Height Above Road 5.8 m  0.65  0.56 
Dune Crest Height Above Road 5.5 m  0.63  0.55 
Dune Crest Elevation 6.7 m  0.62  0.54 
Shore Orientation 9◦ 0.63  0.52 
Dune Toe Elevation 2.4 m  0.60  0.49 
Beach Slope 0.09 m/m  0.58  0.49 
Island Width 1.47 km  0.55  0.39 
Beach Width 106.1 m  0.54  0.37 
Inverse Beach Slope 96 m/m  0.53  0.30 
Road Elevation 2.7 m  0.53  0.27 
EOP to Estuary Shore 292.9 m  0.25  0.05  
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Table 4 
Vulnerability functions ranked by skill.  

Solution 
# 

Island 
Width 

Dune Crest 
Ht. Above Rd. 

Smoothed Dune 
Crest Ht. Above Rd. 

EOP to 
Ocean 
Shore 

Volume Per 
Length 

Beach 
Width 

Beach 
Slope 

Inverse 
Beach Slope 

Dune Toe 
Elevation 

EOP to 
Dune Toe 

Shore 
Orientation 

Max F1 
score 

PR 
AUC 

1          49.8  2.1   0.79  0.82 
2   4.3        48.9  2.0   0.79  0.82 
3   0.7        45.6  2.0  13.0  0.82  0.79 
4   10.3         2.3  22.8  0.77  0.78 
5   20.7         2.4   0.78  0.78 
6           2.7  23.1  0.77  0.78 
7   6.0   1.3      47.3    0.75  0.77 
8   13.6   1.0      47.3   8.5  0.74  0.76 
9   7.5   1.6    2917.0      0.75  0.76 
10    32.4  1.1         0.74  0.75 
11   19.7   1.5         0.75  0.75 

For example, from the first row (Solution # 1) the vulnerability function would be:F = 49.8*(DuneToeElev.) + 2.1*(EOPtoDuneToe).
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The vulnerability of the road at a given transect is affected by its cross-shore beach profile, as well as the adjacent transects’ profiles. 
Shore Orientation was the seventh best indicator, with a PR AUC only slightly less than that of Dune Crest Elevation. 

Beach slope and inverse beach slope were both tested as indicators, with the presumption that the reciprocal of beach slope would 
be a skilled indicator and beach slope would be an unskilled, random indicator. This presumption was based on the fact that beach 
slope is the primary morphological parameter in wave runup and total water level formulations like that of Stockdon et al. (2006). The 
parameterization of runup shows that for the same given deep water wave height, the runup on a steep beach should be greater than on 
a flat beach. The greater the runup in an area, the greater the likelihood for dune overwash. The performance evaluations of beach 
slope and the reciprocal of beach slope contradicted the presumption that steeper beaches should result in greater vulnerability. The 
results showed the reciprocal of beach slope to be an unskilled, random indicator of highway vulnerability and beach slope to be 
slightly skilled, with a PR AUC only 0.02 greater than the upper 95% confidence bound of a random indicator. Dune Toe Elevation was 
also found to be slightly more skilled than a random indicator. 

Of the documented impacts, 97.6% were sand overwash. There were only two occurrences of breaches during the seven storms, 
which made it difficult to fairly assess the island width indicator. Island width was originally devised as an indicator of the island’s 
vulnerability to breaching and, to a lesser extent, sound side flooding (Velasquez-Montoya et al., 2021), so it was not intended to be 
predictive of other impacts, like overwash. Because of the types of impacts caused by the storms in the dataset, the island width in-
dicator performed poorly and appeared to be an unskilled, random indicator. EOP to Estuary Shore was the most unskilled of all and 
was found to be a naïve indicator with a PR AUC significantly worse than that of a random indicator. 

5.4. Functions of multiple indicators 

The goal in exploring vulnerability functions was to determine if any weighted combinations of indicators were more skilled than 
the best indicator, EOP to Dune Toe. Weighting coefficients for each combination of indicators were determined by maximizing the F1- 
Score. These coefficients for the top 11 vulnerability functions are shown in Table 4. Shown along each row of Table 4 is a different 
combination of indicators tested as a function following the form of Eq. (5). Along each row, blank spaces indicate that the corre-
sponding indicators were not included in the development of the function. The functions that utilized unique combinations of multiple 
indicators resulted in the most favorable outcomes. For instance, the most skilled function, Solution #1 in Table 4, included an 
elevation variable representing the exposure of dunes to ocean processes like wave runup, Dune Toe Elevation, and a variable rep-
resenting the distance ocean overwash would have to travel to reach the road, EOP to Dune Toe. The second best function included 
another elevation-based variable, Dune Crest Height, but the variable had a negligible effect on vulnerability predictions. The third 
best function featured these three aforementioned variables in addition to Shore Orientation, representing the shore’s exposure to 
direct wave attack. 

The results shown in Tables 3 and 4 present the indicators and functions of indicators identified as skilled and unskilled, ranked by 
PR AUC. This information can inform decisions on which indicators or functions of indicators are used in larger scale (regional or state) 
evaluations of coastal highway vulnerability in similar geomorphological settings. As other data sets of highway impacts are obtained 
by other researchers, this methodology could be employed to investigate whether these results hold in other locations or for other 
storm conditions. 

6. Discussion 

Binary classification model metrics were employed to assess the skill of 14 indicators in predicting coastal highway vulnerability. 
There are several simple morphological indicators that can predict highway vulnerability to coastal storm impacts; however, some 
indicators are significantly better at predicting vulnerability. EOP to Dune Toe, Volume Per Length, and EOP to Ocean Shore were 
significantly more skilled at predicting vulnerability than the other indicators tested. 

Other indicators that were more skilled than a random indicator were Dune Crest Height Above the Road, Moving Averaged Dune 
Crest Height Above the Road, Beach Slope, Dune Toe Elevation, and Shore Orientation. Island Width, Distance from EOP to Estuary 
Shore, Beach Width, Inverse Beach Slope, and Road Elevation were found to be unskilled indicators of highway vulnerability to storm 
impacts. The predominance of overwash impacts in the dataset should be considered when considering the results. Using the present 
storm datasets, Island Width and Distance from EOP to Estuary Shore appear to be unskilled indicators; but a different framework 
should be devised to appropriately assess them in future work, since they may be more indicative of island breaching and estuarine- 
side events than ocean-side events. 

EOP to Ocean Shore and Shore Orientation proved to be robust indicators, and they are especially powerful because they are easily 
computed and can be used to predict vulnerability on a decadal timescale. Shoreline positions with 95% prediction bounds can be 
projected at a decadal time scale by performing a regression on the time series of shoreline positions (Velasquez-Montoya et al. 2021). 
Then, the distance from EOP to ocean shoreline indicator can easily be computed at any desired spatial scale and resolution with the 
predicted ocean shorelines and known highway alignment. Using the same projected shorelines, shoreline orientation could be 
calculated and used to estimate future vulnerability, as well. These qualities of EOP to Ocean Shore and Shoreline Orientation in-
dicators make regional-scale coastal highway vulnerability assessments feasible. Because Shoreline Orientation’s influence on 
vulnerability is dependent on the wave angle (and therefore the approach angle of the storm), this indicator may be most useful in real- 
time assessments, or in consideration of a suite of potential storms with varying approach angles. To illustrate the potential, EOP to 
Ocean Shore was used to perform a present-day vulnerability assessment across the entire coastline of North Carolina, using publicly- 
available datasets of transects employed by the North Carolina Division of Coastal Management, NC DOT road shapefiles, and shoreline 
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shapefiles publicly available via the North Carolina Department of Environmental Quality. Fig. 9 displays the degree of vulnerability to 
storm impacts based on the value of the EOP to Ocean Shore at each transect. This assessment was done on the most recent shorelines to 
illustrate the potential application of the concepts presented here. However, as mentioned previously, with the incorporation of 
historical shoreline data, the future vulnerability could also be mapped at a decadal time scale. 

Road Elevation on its own was found to be an unskilled indicator; however, consideration of Road Elevation as an indicator may 
have been limited by the fact that there was minimal spatio-temporal variation in the highway’s elevation along the study area. Dune 
Crest Height Above the Road predicted vulnerability slightly better than Dune Crest Elevation alone for the present storm dataset. 

The dataset of storm impacts to the road was limited by the availability of post-storm imagery. Storms with post-storm imagery 
were generally larger and more intense, like hurricanes; however, it is well known that much smaller events can also cause impacts to 
the most vulnerable portions of NC 12 in the study area, as evident in social media posts by NC DOT as well as closure alerts at the 
DriveNC.gov website. The optimal threshold and Max F1-Score are dependent on the storms in the dataset. As the overall severity of 
storms increases, the optimal threshold is likely to increase to classify more transects in the study area as vulnerable. Therefore, the 
optimal threshold determined from a given set of storms might not be the threshold that is best for a particular application. For 
example, if the goal is to capture impacts that are severe enough to make the road impassible, the threshold may be tuned to the 
minimum severity of storms that results in road closures. Future work can employ numerical modeling to create a more robust dataset 
of storms and corresponding roadway impacts, or could explore methods to accurately project more dynamic and stochastic indicators, 
such as Dune Crest Height and Dune Toe Elevation, to predict future vulnerability. 

In addition, in this study, frequency of impacts is used as a proxy for roadway vulnerability. This was primarily because severe 
(pavement damage, breaching) impacts occurred infrequently in our dataset. Future work could investigate weighting impacts by 
severity to determine whether more severe impacts are linked to particular morphological indicators. 

The optimization results supported the hypothesis that a function of multiple, continuous indicator variables would be more skilled 
than any single indicator. The appropriate weights needed to scale indicator variables were found by applying mixed integer linear 
programming to a dataset of observed highway impacts and pre-storm indicator values. Research has pointed out the difficulties and 
inconsistencies in applying existing multivariable coastal vulnerability indices (i.e., Koroglu et al., 2019), so this optimization 

Fig. 9. Statewide vulnerability assessment of North Carolina’s most coastal roads based on the EOP to Ocean Shore indicator.  
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technique may be a valuable tool for objectively identifying variable weights. Additionally, usage of a weighted linear function, rather 
than an index, allows the individual variables to remain continuous, eliminating issues surrounding discretizing variables into suitable 
classes. A weighted linear function of Dune Toe Elevation and EOP to Dune Toe was found to be 6.5% more skilled than the best 
individual indicator (EOP to Dune Toe), based on PR AUC. There are six other functions [in Table 4] found to be slightly more skilled 
than EOP to Dune Toe, as well. 

The underlying uncertainties and variabilities in indicators may have affected the results of this study. An indicator’s distribution of 
values is a characteristic of the study area, the location’s morphology, the size of the area, the resolution and precision of geospatial 
data used, and the precision associated with the method to compute the indicator. Narrowly distributed indicators do not allow for 
adequate differentiation between transects with at the low end of an indicator’s spectrum versus the high end, which can make 
vulnerability predictions less distinct. Road Elevation was found to be an unskilled indicator; however, consideration of Road Elevation 
as an indicator may have been limited by the fact that there was minimal spatial or temporal variation in the highway’s elevation along 
the study area. The limited spread of Road Elevation values can be seen in Fig. 10, which compares the box-and-whisker plots of 56 
mean-normalized values for each indicator. The data for each indicator has been divided by its mean to allow for comparison of all the 
indicators. Road Elevation values are the least widely distributed of all the indicators, with the values ranging between 38 and 156% of 
the indicator’s mean. The evaluated performance of other indicators was not restricted by statistical distributions. The next most 
narrowly distributed indicator was Dune Toe Elevation, but this indicator was found to be significantly skilled. 

7. Conclusions 

From a dataset of observed storm impacts that occurred to a barrier island highway over seven storms, it was found that EOP to 
Dune Toe, Volume per Length, EOP to Ocean Shore Distance, and Dune Crest Height Above the Road (in order of decreasing skill) were 
the best predictors of highway vulnerability to storm impacts. Additionally, it was found that incorporating multiple geomorphological 
parameters into a weighted linear function–such as of EOP to Dune Toe and Dune Toe Elevation–improved predictions of vulnerability. 
This study provides empirical evidence supporting that these simple, geomorphological variables are good indicators of coastal 
highway vulnerability, as they can predict a significant amount of the spatial variability of storm impacts. Thus, resilience planners can 
be confident that coastal infrastructure vulnerability studies employing these indicators can effectively identify the most at-risk areas. 
Future work could focus on expanding storm impact data sets, evaluating the most appropriate threshold values for particular storm 
impacts (by severity), and reducing the uncertainty of both storm impact data and computation of indicator values as topographic data 
sets become more frequently available. 

Fig. 10. Box-and-whisker plot of each indicator’s values normalized by their average, which summarizes the spread of values around each in-
dicator’s mean. The top and bottom whiskers correspond to the maxima and minima. The tops and bottoms of the boxes correspond to the upper and 
lower quartiles of the data. The × represents the mean, 1 in all cases because the data have been normalized by the mean. The line within each box 
represents the median. 
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Glossary 
Hindcast – numerically modeled simulation of a past storm event. 
Shoal – transformation where waves’ heights increase as they move into shallower water. 
Significant wave height – the average wave height of the tallest 1/3rd of waves. 
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Abstract: This work considers a database of pre-storm morphological factors and documented im-
pacts along a coastal roadway. Impacts from seven storms, including sand overwash and pavement
damage, were documented via aerial photography. Pre-storm topography was examined to parame-
terize the pre-storm morphological factors likely to control whether stormwater levels and waves
impact the road. Two machine learning techniques, K-nearest neighbors (KNN) and ensemble of
decision trees (EDT), were employed to identify the most critical pre-storm morphological factors in
determining the road vulnerability, expressed as a binary variable to impact storms. Pre-processing
analysis was conducted with a correlation analysis of the predictors’ data set and feature selection
subroutine for the KNN classifier. The EDTs were built directly from the data set, and feature im-
portance estimates were reported for all storm events. Both classifiers report the distances from
roadway edge-of-pavement to the dune toe and ocean as the most important predictors of most
storms. For storms approaching from the bayside, the width of the barrier island was the second
most important factor. Other factors of importance included elevation of the dune toe, distance from
the edge of pavement to the ocean shoreline, shoreline orientation (relative to predominant wave
angle), and beach slope. Compared to previously reported optimization techniques, both machine
learning methods improved using pre-storm morphological data to classify highway vulnerability
based on storm impacts.

Keywords: coastal roadways; vulnerability; morphological indicators; machine learning; management;
water resources

1. Introduction

Coastal road infrastructure represents one of the main components of cities located at
or near the ocean. This infrastructure suffers inevitable damage due to natural hazards that
pose not only life-threatening events to population, but also a burden to the satisfactory
operation of infrastructure [1]. In the United States, there is an average general cost of
20.5 billion USD per hurricane each year at places exclusively located close to shorelines [2].
Particularly, the state of North Carolina, which has the second largest shoreline (484 km)
of the US Atlantic coast, reported a value of 181 million USD, on average, over the years
of 2016 and 2020, due to the presence of inclement weather events, such as hurricanes [3].
In recent years, local authorities have conducted prevention programs, including the
regular measurement of the physical characteristics of coastal areas. These data-collecting
efforts have guided researchers and transportation agencies to perform prevention-related
activities, such as the development of vulnerability indicators for coastal roadways. The
analysis of these indicators may provide a better understanding of the drivers of coastal
roadway vulnerability and assist transportation departments with preventive actions in
response to natural hazards.
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Pre-storm coastal morphology, in partnership with storm properties (waves and storm
surge), has long been assumed to control impacts on beaches, dunes, barrier islands, and
the infrastructure present on those islands. Coastal morphology features, including island
width, dune crest elevation, and distance from the road edge to the ocean shoreline, are
indicators to assess whether road infrastructure is vulnerable to damage or not [4]. Vulner-
ability analysis reflects the susceptibility of the infrastructure to reduce its functionality,
ranging from debris removal without interruption to temporary road closures [5]. Processes
such as storm surges and sea-level rise are the main drivers of the overall damage to coastal
infrastructure. Previous research works and agency reports agree that the increment in the
number of storms and rising sea levels will likely affect coastal communities at different
severity levels [6,7]. Furthermore, as mentioned by [8], there is a need for local coastal road
systems to handle dynamic conditions. This work aims to contribute to the literature by
developing a classifier model coupling past storm information with current and historical
local morphology factors to inform stakeholders of the vulnerability of coastal roadways to
hurricanes and tropical storms.

The monitoring of areas close to coastal roadways provides critical information about
the past and current conditions of the existing road infrastructure. Especially in barrier
islands, where bridges and roadways are likely the first infrastructure systems facing
the ocean, monitoring indicators have provided managers valuable insights for beach
restoration projects and natural habitat conservation programs [9,10]. Moreover, state
agencies use field-measured data coupled with visualization from aerial photographs
to monitor the morphological conditions of coastal zones, such as barrier islands, over
time, especially after natural hazards events. Therefore, modeling and analyzing these
dynamic data sets are the backbone of the current and future action plans to protect coastal
infrastructure, such as roadways.

Recently, machine learning techniques have been explored to inform land cover classi-
fications and storm responses [10]. A review of machine learning techniques to classify land
cover is provided by [11], with the random forest algorithm having the highest accuracy
level for this application. An examination of machine learning in land use and cover
change detection and modeling was provided by [12]. These authors stated that machine
learning has the strong potential to advance the modeling of land use and cover changes
by identifying and incorporating new exploratory variables.

An application of machine learning to storm response and recovery, considering power
utility, was detailed by [13]. The authors developed a data-driven predictive model to
aid the utility in its emergency planning efforts. Another power utility application was
presented in [14], with a focus on quantification of uncertainty in machine-learning-based
prediction modeling. Other works have focused on predicting physical and social storm
impacts; ref. [15] developed a convolutional-neural-network-based model to rapidly predict
storm surge across an extensive coastal region using a storm track. Other studies have
examined storm impacts and responses via social media data [16–18].

In parallel to the machine learning work, much work regarding the control of variable
storm impacts has focused on damage to protective dunes [19,20]. These studies linked
controls on hydrodynamic forcing to erosion of the dune. Recently, ref. [5] developed a
data set of seven storms and the corresponding impacts on a coastal highway, along with
a robust collection of varying morphological factors that could be used to predict impact.
They used deterministic optimization techniques (i.e., mixed integer linear programming)
and found that the distance from edge-of-pavement to dune toe, volume above mean high
water between edge-of-pavement and ocean shoreline, distance from edge-of-pavement
to ocean shoreline, and dune crest height above the road were the most skilled individual
predictors of highway vulnerability. A multi-indicator function of dune toe elevation and
distance from edge-of-pavement to dune toe was found to be more skilled than any of the
individual indicators.

This paper aims to apply two machine learning techniques to the storm impact data
set presented in previous studies [5], in order to classify roadway vulnerability and iden-
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tify the indicators that best infer storm impacts. We applied two classifiers, K-nearest
neighbor (KNN) and ensemble of decision trees (EDT), to classify whether different lon-
gitudinal segments or transects of a coastal roadway are considered vulnerable (class of
interest) or not. Our models were applied to a 13-mile (21-km) expanse of state highway
North Carolina 12 (NC 12), along Hatteras Island, NC (Figure 1). NC 12 is an essential,
148.0-mile-long (238.2 km) coastal highway that connects Corolla to Cedar Island on the
northern side of the Outer Banks in the state of North Carolina, USA [4].
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2. Materials and Methods
2.1. Dataset

This section describes the data set and methods used in the analysis. The data sets
comprise seven groups, corresponding to seven storm events registered by the North
Carolina Department of Transportation (NCDOT) between 2011 and 2019 [4]. The storms
featured in this paper are summarized in Table 1. Of the seven storms in the data set, five
were hurricanes, and their tracks, in relation to the study area, are shown in Figure 1. Two
of the storms in the data set were winter extra-tropical storms, or “nor’easters”, which
are not tracked in the same way as hurricanes. Locations of storm impacts to the study
area’s highway, NC 12, were identified for each of the seven storms. Aerial imagery from
the National Oceanic and Atmospheric Administration (NOAA) national geodetic survey
and imagery, collected under the NCDOT Coastal Monitoring Program [4], were manually
examined at the 1:1250 scale to locate road impacts along NC 12 (Table 1). These data
collection efforts were described in detail in [5] and summarized in this section. A section
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of roadway was determined to be impacted if more than 50 percent of the roadway was
covered with sand or visibly damaged. In general, post-storm imagery was available on
the order of days post-storm, which precluded the inclusion of visible flooding as a storm
impact, as it had already receded.

Table 1. Summary of storms and their impacts on the study area. Peak wave heights and water levels
were obtained from the stations shown in Figure 1.

Storm # Storm Date and
Duration

Storm
Approach

Peak Wave
Height (ft)

Max Water
Level (ft

NAVD88)

Storm Impacts to
Study Area

1 Hurricane Irene August 2011
50 h Sound-side 21.4 3.0

Island breaches,
erosive damage to

the road, and
overwash on road

2 Hurricane
Sandy

October 2012
88 h Ocean-side 18.8 4.5 Wide-spread

overwash on road

3 Hurricane
Arthur

July 2014
14 h Sound-side 18.5 1.3

Erosive damage to
pavement,

overwash on road

4 Nor’easter February 2016
55 h N/A 15.7 3.5 Overwash on road

5 Hurricane
Matthew

October 2016
153 h Ocean-side 17.2 3.3 Overwash on road

6 Nor’easter March 2018
148 h N/A 17.5 3.7 Overwash on road

7 Hurricane
Dorian

September 2019
47 h Ocean-side 21.9 4.6 Overwash on road

The indicators used to determine an impacted road transect are numerical values of
the geomorphologic characteristics extracted from the coastal features of the area; they are
listed in Table 2 and illustrated in the schematic in Figure 2 [5]. Most of the geomorpho-
logical measurements provided in Table 2 are straightforward and visible in Figure 2. It is
noted that the shoreline was identified as the visible wet-dry line on aerial photographs
and is approximately the mean high-water line [21]. In this area, the mean high-water
elevation is approximately 1.1 ft (0.34 m) above the North American Vertical Datum of 1988
(NAVD88) [22]. The “angular difference between shore-normal orientation and weighted
mean wave direction”, however, is a bit complicated to illustrate. The hypothesis was
that the shore’s orientation can be used as a proxy for exposure to average storm waves.
Transects along the study area that are more exposed to direct storm waves are more
likely to see significant erosion and overwash, which can affect the highway. To calculate
the weighted mean wave direction (similar to the weighted mean wind direction used
by [23]), wave data from the Oregon Inlet waverider buoy (NDBC station 8652587, Figure 1),
between 2012–2020, were filtered to only include significant wave heights greater than
2 m, and wave direction was weighted by the square of significant wave height to better
represent the directional distribution of wave energy. Circle statistics functions were used
to ensure that angular directions were preserved. The mean wave direction was assumed
to be constant across the relatively small (13-mile, 21-km) study area. The orientation of a
line normal to the shore at each transect was computed at each transect along the study
area. The angular difference between the wave height weighted mean wave direction and
shore-normal orientation was computed on a transect basis. The measurement could vary
from 0 to 90 degrees, where 0 degrees would suggest that the shoreline is most exposed to
the average storm wave direction, and 90 degrees would be most sheltered from the mean
storm wave impact.
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Table 2. Geomorphological characteristics and units used as indicators for vulnerability classification.

Geomorphological Characteristic

(1) Island width (ft) from the estuary
shoreline to the ocean shoreline
(island width)

(2) Dune crest elevation (ft) relative to
NAVD 88 (dune crest elevation)

(3) Road elevation (ft) relative to NAVD 88
(road elevation)

(4) Difference in elevation (ft) between the
dune crest and the road (dune crest
height above road)

(5) Distance from road edge-of-pavement
(EOP) to ocean shoreline (ft) (EOP to
ocean shore)

(6) Volume above MHW between EOP and
ocean shoreline (ft3/ft) (volume
per length)

(7) Distance from road EOP to estuarine
shoreline (ft) (EOP to estuary shore)

(8) Distance from the dune toe to the ocean
shoreline (ft) (beach width)

(9) Beach slope found according to the USGS
2-point method [24] (beach slope)

(10) Dune toe elevation (ft) relative to NAVD
88 (dune toe elevation)

(11) Distance from road EOP to dune toe (ft)
(EOP to dune toe)

(12) The angular difference between
shore-normal orientation and the
weighted mean wave direction (degrees)
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Figure 2. Morphological indicators used in the present study to classify the vulnerability of a coastal
road. Island width (IW), edge of pavement to ocean shore (EOPOS), edge of pavement to dune
toe (EOPDT), dune crest height above road (DCHAR), edge of pavement to estuary shore (EOPES),
volume per length (VPL), dune toe elevation (DTE), beach slope (BS), and beach width (BW). Adapted
from [5].

The binary outputs of each data set assign 0 if the road transect was not impacted by a
storm and 1 otherwise. These data sets have an imbalance problem, as the class of interest
(impacted road transect or 1) happens less frequently than the not impacted road class (0).
Therefore, the evaluation of the proposed methodology includes metrics of performance
that reduce this implicit bias from the results, as explained below.

2.2. Correlation Analysis

A correlation analysis was performed to identify linear dependence among predictors
prior to building one classification model, as explained below. The correlation matrix, where
rows represent observations and columns the variables, shows the Pearson correlation
coefficient calculated as shown in Equation (1):

ρ(A, B) =
1

N − 1

N

∑
i=1

(
Ai − µA

σA

)(
Bi − µB

σB

)
(1)

where A and B are two random variables with N observations; µ and σ are the mean and
standard deviations of A and B, respectively.
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The preprocessing step filters predictors based on the correlation (ρ) and implements
a feature selection subroutine. The Chi-square test reports low p-values when the corre-
sponding predictor is dependent on the response variable and considered an important
feature. If ρ between two variables is equal to or higher than 0.95 (e.g., considered perfectly
correlated), the most important feature reported by the Chi-square test remains in the
data set.

2.3. Binary Classifiers

We apply two widely known classifiers methods for binary classification as the K-
nearest neighbors (KNN) [25] and the ensemble of decision trees (EDT) [26]. These two
classifiers were selected because KNN and EDT have been proven as classifiers that ef-
fectively handle imbalanced data sets [27–29]. For the KNN classifier, we filter perfectly
correlated variables based on their rank correlation and select the most important predictors
based on a feature selection subroutine that uses the Chi-square test [30]. This step avoids
inflating the distance from correlated predictors. Decision trees do not assume relationships
between features, but split data into subsamples that boost their classification performance.
To overcome overfitting issues, related to creating a single decision tree, we use the EDT
model that improves its performance, albeit decreasing interpretability. Additionally, these
classifiers are not considered black boxes with random initial parameters, which makes
them feasible to reproduce for similar potential problems.

2.3.1. K-Nearest Neighbor (KNN)

KNN is a simple supervised-learning classifier that assigns a new variable to the class
with the most values from the closest k neighbors located on a search space, determined
by the number of predictors [25]. The two inputs required to train and predict a KNN
model are the number of neighbors (k) and type of distance used to determine the closest
neighbors in a jth dimension, where j corresponds to the number of predictors (Figure 3).
In this work, we performed an optimization subroutine to find the best hyperparameters
of the KNN model for each storm. A Bayesian optimization algorithm [31] was applied
to improve the performance of the KNN classifier model for each storm. The Bayesian
optimization subroutine decision variables include the number of neighbors, distance
metric, distance weight, and whether the data are standardized. Table 3 shows the search
range used for the hyperparameter optimization of the KNN model [32].
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Table 3. KNN optimizable hyperparameters and search range.

Hyperparameter Search Range

Number of neighbors max(1, Num Observations/2)

Distance metric
City block, Chebychev, Correlation, Cosine,
Euclidean, Hamming, Jaccard, Mahalanobis,

Minkowski (cubic), Spearman

Distance weight
Equal

Inverse
Squared inverse

Standardize data
True
False

KNN takes, as response, a binary variable called impact, where 1 represents the
road is vulnerable to storms impacts and 0, otherwise. The model includes the most
important features retrieved from the correlation analysis and feature selection subroutine
as predictors. These features, as shown in Table 2, include (1) island width (ft), (2) dune
crest elevation (ft), (3) road elevation (ft), (4) dune crest height above road (ft), (5) EOP to
ocean shore (ft), (6) volume per length (ft3/ft), (7) EOP to estuary shore (ft), (8) beach width
(ft), (9) beach slope, (10) dune toe elevation (ft), (11) EOP to dune toe (ft), and (12) shore
orientation (degrees).

2.3.2. Ensemble of Decision Trees (EDT)

Decision trees are part of machine learning methods widely applied in the water
quality, risk assessment, and forecasting domains to classify the risk of events, including
pipe failure and water quality problems [27–29,33]. Decision trees graphically represent a
classification or regression problem. The components of a single decision tree include a
root node, internal nodes, and terminal nodes (see Figure 4). For classification models, a
decision tree starts by assigning a class label to each leaf node. The non-terminal nodes,
which include the root and other internal nodes, contain feature test conditions to separate
records that have distinct characteristics. The root node has no incoming edges and can
have multiple outgoing edges. Each internal node has exactly one incoming edge and two
or more outgoing edges, and each leaf node has exactly one incoming edge and no outgoing
edges [27,28,33,34]. In terms of bias and variability, a decision tree has low bias and high
variance; therefore, averaging the result of many decision trees reduces the variance, while
maintaining low bias. The application of ensembles enhances the performance of a single
tree. Ensemble of decision trees (EDTs) group individual trees as one model to predict or fit
numerical and categorical data (Figure 4). EDTs are built by comparing the “out-of-bag”
(OOB) error value from all the individual decision trees and a voting combination of their
results. EDTs have proved to be more robust when dealing with bias and variance, thus
leading to generally a better prediction performance. However, EDTs are complex models
to analyze, compared to individual decision trees [35].
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EDTs start by identifying the root node. We used the well-known Gini index (Gidx)
(Equation (2)) of a node as the split criterion to identify the root node of each tree in
the ensemble. The Gidx with the lowest value is selected as the root node, and each tree
grows until no more features remain for splitting [36]. EDTs are built using mainly two
types of methods: bootstrap aggregation (bagging) and boosting. Bagging creates data set
replicas using bootstrapping to incorporate single decision trees. A random selection of
the observations with replacement is applied to create the bootstrap replicas. The most
common application of bagging is the random forest method [36], where every tree of
the ensemble randomly selects predictor variables for each split along the decision tree.
Boosting methods, on the other hand, build the ensemble sequentially by using the output
of the previous decision tree as input for the next one. The adaptive logistic regression
(LogiBoost) algorithm, which is a variation of the adaptive boosting methods, can improve
model performance when dealing with binary classification problems [37]. LogiBoost is a
type of the widely applied adaptive boosting algorithm, where the objective function is to
minimize the binomial deviance rather than the exponential loss, as shown in Equation (3):

Gidx = 1−∑
i

pr(i)2 (2)

where pr is the probability of an observation i classified into a particular class.

N

∑
n=1

wnlog(1 + exp(−2yn f (xn))), (3)

where:

yn ∈ {−1,+1} is the true class label;
wn are normalized weights;
f (xn) ∈ (−∞,+∞) is the predicted classification score calculated, as shown in Equation (4):

f (x) =
T

∑
t=1

atht(x), (4)

where:

at = 1
2 log 1−εt

εt
are weights of the weak hypotheses (h) in the ensemble that are used to

determine weighted error (ε), as shown in Equation (5):

εt =
N

∑
n=1

d(t)n �(yn 6= ht(x)), (5)

where:

xn is a vector of predictor values for observation n;
yn is the true class label;
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ht is the prediction of learner with index t;
� is the indicator function;

d(t)n is the weight of observation n at time step t.

In this study, we implemented a binary classification based on the analysis of the
impacted roads with data collected from a set of storms that struck the North Carolina
coast between 2011 and 2018.

2.3.3. EDT Settings

The number of trees or learners, their depth, and the overall learning rate are needed
to set up an EDT model. Accuracy improves with the number of trees but also increases
EDT’s complexity and computation time. Based on previous applications in water-related
problems [27–29,33] and a series of preliminary analyses to determine the number of trees,
a range between 10 and 100 trees was evaluated. A suitable option was found at 27 trees for
the ensemble, as the performance did not improve with more trees. The maximum number
of splits determines how deep a tree can be expanded. We analyzed a range between 10 and
100 observations, where 34 splits per tree produced the best results. Similarly, the learning
rate that defined the step size of the error minimization was analyzed between 0.01 and 1.0,
and a value of 0.65 was defined as suitable for the application of this model.

2.3.4. Model Training and Testing

The data sets for each storm were randomly partitioned into training (70%), validation
(10%), and testing (20%) sets. Based on previous applications [33], each model was trained
ten times to account for the stochasticity of the sampling method, and the average metrics of
performance associated with each storm are reported as the results of the analysis. For the
application of each classifier method, we optimize its hyperparameters, using the validation
subset of each storm. Additionally, we compare the performance of these two classifiers
using metrics that include the F1 score and precision-recall area under the curve (PR AUC)
values, which are suitable for dealing with imbalanced data sets [38]. Finally, feature
selection is presented to give a comprehensive analysis of the predictors with different
effects on the model performance.

2.4. Metrics of Performance

The performance of classification models uses a set of commonly known metrics that
are calculated using the confusion matrix, which shows the performance of a model in
predicting samples within four classes (Table 4). True positives (TP) and true negatives (TN)
denote the number of positive and negative events that are correctly identified, respectively.
In this research, positive events correspond to events with a value of 1, which means that
the predicted and observed outputs are vulnerable, and negative events correspond to
events with a value of 0, which means that predicted and observed outputs are not vulner-
able. False positives (FP) denote the number of not vulnerable events incorrectly identified
as vulnerable, and false negatives (FN) indicate the number of vulnerable events incorrectly
identified as not vulnerable. Performance metrics, including accuracy (Equation (6)), pre-
cision (Equation (7)), recall (Equation (8)), and the F-1 score (Equation (9)), were calculated
using the confusion matrix, as follows.

Table 4. Confusion matrix of vulnerability. Adapted from [5].

Classified Vulnerable Classified Not Vulnerable

Observed vulnerable True positives False negatives
Observed not vulnerable False positives True negatives
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Accuracy =
TP + TN

TP + TN + FP + FN
(6)

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F− 1 Score =
2 ∗ Precision ∗ Recall

Precision + Recall
(9)

3. Results
3.1. Correlation Analysis and Feature Selection

This section reports on the correlation analysis and feature selection subroutine ap-
plied prior to the KNN implementation. Then, the performance metrics of the two machine
learning methods used for the binary classification problem are discussed. The correla-
tion analysis (Equation (1)) of the predictors shows that, for all storm events, Pearson’s
correlation coefficient indicates perfect correlation among several variables. As expected,
“(1) Island Width” is perfectly correlated to “(7) EOP to Estuary Shore”; “(2) Dune Crest
Elevation” correlated to “(4) Dune Crest Height above Road”; and “(5) EOP correlated to
Ocean Shore” to “(11) EOP to Dune Toe” (Figure 5).
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scribed in Table 2. The rest of the correlation matrices are presented in the Supplemental Information.

Feature selection is used to determine which perfectly correlated variable remains
in the predictors’ data set. Using the Chi-square test, the method reports that “Island
Width” is a slightly better estimate than “EOP to Estuary Shore“ for storm events 1 to 5
(Figure 6a–e), and the opposite occurs for storms 6 and 7 (Figure 6f–g). Similarly, “Dune
Crest Height above Road” is more important than “Dune Crest Elevation” for all storms,
except for storm 5. Finally, “EOP to dune toe” is a better predictor than “EOP to Ocean” for
all storms, except for storm 4 (Figure 6).
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storm 4 (d).
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3.2. KNN and EDT Performances

The classifier performances (Figure 7) show that the F-1 score reported by the KNN
classifier looks similar to the EDT classifier’s F-1 score across the seven storm events.
However, the KNN F-1 score had a slightly higher value than EDT in all storms, except
storm number 4. We performed a t-test to examine the statistical relevance of the difference
between the reported F-1 scores. The following hypothesis was evaluated:

H0 = The pairwise difference between F-1 scores from KNN and EDT has a mean equal to
zero at the 5% significance level. µF−1 KNN − µF−1 EDT = 0

HA = The pairwise difference between F-1 scores from KNN and EDT has a mean not equal
to zero at the 5% significance level. µF−1 KNN − µF−1 EDT 6= 0
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fidence intervals calculated by adding and subtracting one standard deviation for high and low
boundaries, respectively.

The two-tailed t-rest resulted in a p-value of 0.04, indicating that the test rejects the
null hypothesis (H0) of having identical mean values, in favor of the alternate hypothesis
(HA) that the mean KNN F-1 score is significantly different than that of the EDT F-1 score
at the 5% significance level.

The KNN and EDTs models’ performance, in terms of the F-1 score, shows that
the models correctly classified a coastal road as vulnerable, based on the morphological
indicators, at least 90% of the time. In the remaining 10%, the methods cannot classify an
observation into the correct class. These high F-1 score values demonstrate the robustness
of the classifiers to handle an imbalanced data set, where the class of interest (i.e., the
road is vulnerable) is less frequent than the majority class (i.e., the road is not vulnerable
to impact).

In terms of the area under the curve (AUC) reported by the classifiers, the EDT
outperformed KNN classifier across the seven storms events (Figure 8). Both classifiers
reported their maximum value during the storm event number 6, where KNN AUC
represented 97% of EDT AUC. This difference increased for the lowest performance of both
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classifiers that occurs during storm event number 4, where KNN AUC only represented
86% of EDT AUC. Similar to the F-1 score analysis, the following hypothesis of the AUC
values was evaluated:

H0 = The pairwise difference between AUC values from KNN and EDT has a mean equal
to zero at the 5% significance level. µAUC KNN − µAUC EDT = 0

HA = The pairwise difference between AUC values from KNN and EDT has a mean not
equal to zero at the 5% significance level. µAUC KNN − µAUC EDT 6= 0
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The two-tailed t-test resulted in a p-value of 0.0063, indicating that the test rejects the
null hypothesis (H0) of having identical mean values, in favor of the alternate hypothesis
(HA) that the mean KNN AUC value is significantly different than that of the EDT AUC
value at the 5% significance level.

For further interpretation of the performance metrics’ values, each storm’s receiver
operating characteristic (ROC) curve is presented (Figure 9). The predictability of the
classifiers reports a recall or sensitivity higher than 90% at a very low FPR. Furthermore,
the EDT model reports high F-1 scores and AUC values for all storms and samples selected,
as explained in the “Model Training and Testing” subsection (Figure 10).



J. Mar. Sci. Eng. 2022, 10, 1158 14 of 20

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 14 of 22 
 

 

 
Figure 9. Area under the receiver operating characteristics (AUROC) for each storm event. Cutoff 
points showed that, with 10% of false positive rate (FPR), storm events 1, 2, 4, 6, and 7 reported true 
positive rates (TPR) higher than 90% of the time. 

 
Figure 10. (a) F-1 score and (b) AUC values reported by the EDT model for each storm event and 
random sample. 

A comparison with a recent related application to the analysis of vulnerability assess-
ment [5] was conducted to highlight the performance of the proposed two classifiers (Ta-
ble 5). KNN and EDT classifiers show an improvement in the classification of highway 
vulnerability, with respect to the previous application across all the storm events. For the 
F-1 score, KNN that reported the best performance, when compared to EDT, had an aver-
age F-1 score of 0.94, with a minimum of 0.90, corresponding to storm event 3. The average 
F-1 score reported by [5] was 0.82, with a minimum of 0.57, corresponding to storm event 
4. Similarly, the proposed classifiers showed an improvement in the AUC values (Table 
6). For the AUC value, EDT that reported the best performance, when compared to EDT, 
had an average AUC value of 0.96, with a minimum of 0.94, corresponding to storm event 
4. The average AUC value reported by [5] was 0.83, with a minimum value of 0.53, corre-
sponding to storm event 4. The classifying capabilities of both the KNN and EDT methods 
outperformed the previous implementation [5] by an average of 10% across the storm 
events. 

  

Figure 9. Area under the receiver operating characteristics (AUROC) for each storm event. Cutoff
points showed that, with 10% of false positive rate (FPR), storm events 1, 2, 4, 6, and 7 reported true
positive rates (TPR) higher than 90% of the time.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 14 of 22 
 

 

 
Figure 9. Area under the receiver operating characteristics (AUROC) for each storm event. Cutoff 
points showed that, with 10% of false positive rate (FPR), storm events 1, 2, 4, 6, and 7 reported true 
positive rates (TPR) higher than 90% of the time. 

 
Figure 10. (a) F-1 score and (b) AUC values reported by the EDT model for each storm event and 
random sample. 

A comparison with a recent related application to the analysis of vulnerability assess-
ment [5] was conducted to highlight the performance of the proposed two classifiers (Ta-
ble 5). KNN and EDT classifiers show an improvement in the classification of highway 
vulnerability, with respect to the previous application across all the storm events. For the 
F-1 score, KNN that reported the best performance, when compared to EDT, had an aver-
age F-1 score of 0.94, with a minimum of 0.90, corresponding to storm event 3. The average 
F-1 score reported by [5] was 0.82, with a minimum of 0.57, corresponding to storm event 
4. Similarly, the proposed classifiers showed an improvement in the AUC values (Table 
6). For the AUC value, EDT that reported the best performance, when compared to EDT, 
had an average AUC value of 0.96, with a minimum of 0.94, corresponding to storm event 
4. The average AUC value reported by [5] was 0.83, with a minimum value of 0.53, corre-
sponding to storm event 4. The classifying capabilities of both the KNN and EDT methods 
outperformed the previous implementation [5] by an average of 10% across the storm 
events. 

  

Figure 10. (a) F-1 score and (b) AUC values reported by the EDT model for each storm event and
random sample.

A comparison with a recent related application to the analysis of vulnerability as-
sessment [5] was conducted to highlight the performance of the proposed two classifiers
(Table 5). KNN and EDT classifiers show an improvement in the classification of highway
vulnerability, with respect to the previous application across all the storm events. For
the F-1 score, KNN that reported the best performance, when compared to EDT, had an
average F-1 score of 0.94, with a minimum of 0.90, corresponding to storm event 3. The
average F-1 score reported by [5] was 0.82, with a minimum of 0.57, corresponding to storm
event 4. Similarly, the proposed classifiers showed an improvement in the AUC values
(Table 6). For the AUC value, EDT that reported the best performance, when compared to
EDT, had an average AUC value of 0.96, with a minimum of 0.94, corresponding to storm
event 4. The average AUC value reported by [5] was 0.83, with a minimum value of 0.53,
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corresponding to storm event 4. The classifying capabilities of both the KNN and EDT
methods outperformed the previous implementation [5] by an average of 10% across the
storm events.

Table 5. Comparison of the F-1 score values of classifying highway vulnerability.

Storm Parameter [5] KNN EDT

1

F-1 Score

0.85 0.93 0.92
2 0.88 0.92 0.91
3 0.83 0.90 0.89
4 0.57 0.96 0.96
5 0.76 0.94 0.93
6 0.89 0.97 0.97
7 0.93 0.95 0.95

Table 6. Comparison of the AUC values of classifying highway vulnerability.

Storm Parameter [5] KNN EDT

1

AUC values

0.91 0.92 0.97
2 0.85 0.91 0.97
3 0.89 0.89 0.96
4 0.53 0.81 0.94
5 0.74 0.91 0.95
6 0.94 0.96 0.99
7 0.94 0.94 0.97

3.3. EDT Feature Importance Analysis

Different attributes contribute to the model with different magnitudes. For the EDT
classifier, a feature importance analysis was conducted to determine how attributes affected
the model performance for each of the seven storm events (Figure 11). The most important
predictor across all the events is the “(11) Distance from road EOP to dune toe (ft)” (see
Table 2). The second-best predictor depends on the evaluated storm. While “(5) Distance
from road edge-of-pavement (EOP) to ocean shoreline (ft)” ranks second in storms 2 and 7,
and the “(10) Dune toe elevation (ft) relative to NAVD 88” ranks second in storms 1 and 5.
The rest of predictors that are part of the top three vary across the storm events and include
“The angular difference between shore-normal orientation and the weighted mean wave
direction (degrees)”, “(6) Volume above MHW between EOP and ocean shoreline (ft3/ft)”,
“(1) Island Width (ft)”, “(8) Beach Width (ft)”, and “ (9) Beach Slope”.
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Figure 11. Feature importance results reported by the EDT models for all the storm events. Storms
1 to 7 correspond to the panels (a–g), respectively. The “(11) Distance from road EOP to dune toe
(ft)” was the best predictor across all the storm events. (10) Dune Toe Elevation is the second-best
predictor for (a) storm 1 and (e) storm 5. (5) EOP to Ocean Shore is also the second-best predictor for
(b) storm 2 and (g) storm 7. Finally, (12) Shore orientation (degrees) is part of the top five predictors
in storm 3 (c), 4 (d), and 6 (f).
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4. Discussion

The results of coastal highway vulnerability studies inform decisions regarding when
and where to implement projects. Examples of projects that could be informed by highway
vulnerability studies include highway realignment, artificial dune construction, shoreline
hardening, bridge construction, and regular maintenance. Maximizing the accuracy of
vulnerability assessment is crucial for assuring the effectiveness of these projects and
making the most out of limited transportation budgets.

A previous study [5] sought to evaluate geomorphological indicators and determine
whether a weighted linear function of multiple indicators could improve the prediction
of highway vulnerability, beyond that of individual indicators. Ref. [5] (2022) found that
combining multiple indicators, namely the distance from road EOP to dune toe and dune
toe elevation, did improve performance. However, it was not clear whether the attained
accuracy (F1 score and PR AUC) was limited by the assumed function form, and there
were open questions regarding whether more complex function form or machine learning
methods could improve the performance.

This present study supported the hypothesis that machine learning methods would
improve the classification of highway vulnerability as impacted or not. This study also
affirmed the finding of [5], i.e., that distance from EOP to dune toe is a powerful and reliable
predictor of highway vulnerability. Distance from EOP to dune toe was found, in this study,
to be the most important predictor among most of seven storms of varying intensity and
approach, relative to the study area. Some of the results seemed counterintuitive, such as
the finding that dune crest elevation is not important for certain storms (Figures 6 and 10).
However, this area is highly managed, as discussed in [4], with frequent dune rebuilding.
This may lead to dunes with relatively high crest elevations being quite close to the shore-
line, where the dune is essentially a high, narrow barrier between storm waves and the
roadway. In this situation, a high dune crest does not substantially lessen vulnerability.

Other factors, such as the angular difference between the shore-normal orientation and
weighted mean wave direction, are shown to be important for some storms but not others.
With regard to this angular difference, the relative angle between waves and structures
has been shown to lead to complex effects by [39–43]. The research performed by [39]
examined low-crested structures under an oblique wave attack. It was found that, for
smooth (asphalt) structures, there was a strong dependency between the transmission
coefficient and angle of wave attack, with the transmission decreasing with increasing
incident wave angles. The stability of placed block revetments under oblique wave attack
was investigated by [40], with the results showing that waves induce a pressure difference
across the cover layer that is more complicated than that of perpendicular wave attack.
Ref. [41] examined an oblique wave attack on open granular (sand) filters underneath
armored slopes via physical model tests, showing that, for larger wave angles (where
0 degrees is perpendicular), the amount of filter erosion decreases. The effect of wave
structure angles for tsunami loads on bridges was examined by [42,43], with the findings
including the result that complex three-dimensional effects are generated by the interaction
of the waves and structure. Ref. [44] examined the wave-structure interactions on bridge
decks with varying geometries, also finding that loading is complex. Although these studies
were not focused on ground-based roadways, similar complexity could be contributing to
the results, showing the angular difference to be important for specific storms, while not as
influential for others, and presenting an opportunity for further study.

While this research investigated 12 geomorphological factors that were applicable to
the study area, there are other parameters cited in the literature that may be useful indicators
for vulnerability assessments of roadways in other locations. A previous work [14] found
that the width of elevated coastal decks affects the hydrodynamic loads imparted by waves
on the structure, as well as that the ratio of “wavelength-to-deck width” is a critical factor.
In the region of the present study, the roadway width did not significantly vary along
the study area; therefore, this factor could not be examined. Similarly, dune vegetation
was not included in this study. Past work [45–48] has shown that vegetation impacts
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wave-induced pressures, loads, and erosion on dunes and other structures. The fact that
vegetation on dunes enhances their resiliency and dunes generally serve as protection for
roadways on their landward side suggests that vegetation could have a significant effect
on the vulnerability of coastal roadways. This factor was not included in the vulnerability
classification models of this current study because it was difficult to adequately quantify
vegetation density along a transect cross-section. In is noted that, for this specific study area,
the sections that had more dense vegetation between the road and shoreline, which also had
a large distance from roadway EOP to dune toe and/or roadway EOP to shoreline—this
would lead to a high correlation of these variables. These two factors (roadway width
and dune vegetation) could be crucial indicators in classifying roadway vulnerability for
other study areas, where there may be substantial spatial variation not captured by other
indicators. The study area extent was a limitation for the current research, which hindered
our ability to more comprehensively assess additional vulnerability indicators. Future
research could add data sets from other barrier islands, where additional variables, such as
vegetation and roadway properties, could be included in the model to potentially improve
the vulnerability assessment.

It is noted that the most important feature for both classifiers used in this study, dis-
tance from EOP to dune toe, can also be measured without digital computation, using
aerial photographs. The development of the presented study allows researchers and practi-
tioners to classify road vulnerability as impacted or not, based on local geomorphological
observations. The models’ performance outperforms previous works significantly and can
be applied to different locations where these features are available. Distance from EOP to
ocean shoreline has been previously employed to evaluate highway vulnerability in this
study area [4], as have long-term erosion rates and deterministic numerical modeling [49].
However, the results of this study indicate that coastal managers may be able to employ
data-driven models to evaluate variability in coastal highway vulnerability on barrier
islands. As remote sensing technology improves, and frequently updated topography
becomes available [50,51], having a data-driven model that will classify portions of the
roadway as vulnerable, without the high computational cost of deterministic numerical
modeling, will be beneficial. The success of EDT in this study implies that this machine-
learning model may be a useful tool for highway vulnerability studies. The model could be
run with the most up-to-date geomorphology data available, in order to provide predictions
regarding barrier island highway locations that are most susceptible to storm impacts. The
application of the models used in this study are limited to the vulnerability classification
of land-lying roadways located on wave-dominated barrier islands with sandy coastlines.
Additionally, the models may not perform well for study regions where vegetated dunes are
not well-correlated to distance from EOP to dune toe because vegetation was not included
as a distinct variable within the model. The long-term effects of sea-level rise may bias the
performance of the models, unless elevation datums are adjusted over time.
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APPENDIX D: Revisions to Physical and Biological Monitoring Protocols  

  



Timeline and Description of Contents 

 

Only July 27, 2022, NCDOT requested a reduction in scope of the physical and biological 

monitoring protocols after discussions with the Coastal Monitoring Team. This letter is attached 

in this Appendix. On October 11, 2022, USFWS replied to the request for revisions; this letter is 

also attached. This letter specifies that: 

“The number and location of the targeted samples for each survey year (i.e., calendar year) 

should be discussed at the prior Coastal Monitoring Team meeting(s), collectively agreed upon 

by the Coastal Monitoring Team, and summarized either in the annual Coastal Monitoring 

Report (as currently in Appendix A with the complete Physical and Biological Monitoring 

Report) or as a separate annual addendum to the report with similar existing reporting deadline 

and requirements (e.g., proposed sampling plan for the 2024 sampling year would be provided 

with the 2022 Coastal Monitoring Report in October 2023 as currently scheduled).”  

A meeting was held on Thursday, November 3, 2022, to discuss the proposed sampling 

protocols for 2023. The team agreed that the heavy minerals sampling would take place at mid-

beach. Additionally, the team agreed to designate approximately 21 transects as “Sentinel 

Transects” to maintain continuity with the long-term sampling dataset, with additional 

transects designated each year by the team to add information where the most critical 

information would be provided. The decision on the sampling transects was as follows: 

Sentinel Transects:  TG2, T5, T11, 17, 23, 29, 32, 35, 38, 41, 44, 47, 50, 53, 56, 59, 62, 65, 68, 71, 

74 (21 TOTAL transects). 

For 2023, add: 

Canal Zone: 13, 15, 19, 21 

Visitor Center: 36 

Pea Island Breach (Split Pea): 49, 51 

S-Curves: 69, 70, 72, 73 

Maps showing these transects are also included in this appendix. 



 

 

 

  STATE OF NORTH CAROLINA 

  DEPARTMENT OF TRANSPORTATION 

ROY COOPER  J. ERIC BOYETTE 
GOVERNOR   SECRETARY 

 

 

July 27, 2022 
 

Rebecca Harrison, PhD 

USFWS Pea Island National Wildlife Refuge 

P.O. Box 1969 

Manteo, NC 27954 

 

 

Dear Dr. Harrison, 

 

This letter outlines the NCDOT’s requested revisions to future Pea Island National Wildlife 

Refuge (PINWR) sand surveys 

 

Purpose of Current Sand Survey 

The Pea Island sand study was designed to continue the work of Dolan and others on PINWR to 

determine the effects of the US Army Corps of Engineers sand bypassing program on Pea Island- 

how alteration to the physical environment impacts biological processes on the beach face of the 

Refuge.  This sand bypassing is a direct effect of the dredging of Oregon Inlet resulting from the 

Terminal Groin installation. 

 

On August 9, 2012, the USFWS signed the Right of Way easement agreement between the 

USFWS and the NCDOT to authorize the retention of the existing terminal groin and connected 

revetments on the northern terminus of PINWR.  This was a renewal of the permit dated June 20, 

1989, for the NCDOT to use PINWR lands for the retention of the existing terminal groin and 

connected revetments on the northern terminus of Pea Island. 

 

The easement document was authorized by the Secretary of the Interior, through his authorized 

representative, the Regional Director, USFWS, in Atlanta, Georgia in accordance with applicable 

authorities and regulations published in 50 CFR 29.21. 

 

 

 

 

 

 



 

Documents Requiring the Sand Surveys 

This easement agreement and other documents specify the physical and biological monitoring of 

the sand on PINWR and the Coastal Monitoring Program (CMP) work as project commitments.  

Excerpts from these documents are listed below. 

 

From the 2012 Terminal Groin easement agreement: 

“Consideration for this grant shall be the conservation, management, and where 

designated the enhancement of wildlife habitat affected by stabilization of dynamic inlet over-

wash, dominated habitats along the north end of the Refuge, and partially restoring habitat lost 

to both allusive and erosive action or degradation due to interference with the natural movement 

of sand and sediments through structural stabilization of the inlet shoreline.”  

 

Section II of the easement specifies the terms and conditions of the monitoring programs that 

NCDOT will be responsible for.  NCSU scientists are and have been conducting the Coastal 

Monitoring Program (CMP). The CMP involves aerial photography, tracking of shoreline 

changes and geo-spatial habitat analysis and modelling for detecting habitat change over time.  

The area to be covered (monitored area) is on the Refuge and is to include the terminal groin to 

the new inlet approximately 6 miles south and from ocean to sound in the first mile south of the 

terminal groin and from the ocean to the west side of NC 12 ROW for miles 2-6. This 

monitoring area applies to the NCSU work. 

 

This section also describes the conditions of the sand surveys: “NCDOT shall monitor physical 

and biological parameters along transects across the beach at approximately 0.2-mile intervals 

within the monitored area.  Monitoring transects shall include, but are not limited to, dune width 

and height, beach width, beach slope, sand grain size as determined through one sample from 

the upper beach, and one sample each from the upper, mid and lower swash zone, and mineral 

content of swash zone sand.   Biological data collection shall include but is not limited to beach 

invertebrates such as the ghost crab, swash zone invertebrates such as the mole crab, coquina, 

amphipods, and polychaete worms.”   In a letter from the Refuge to NCDOT dated January 24, 

2012, the Refuge manager requested the physical/biological sand survey be extended the entire 

length of the Refuge to replace previous SUP #2006-014. 

 

Section II of the easement also includes an Adaptive Management statement that requires “an 

analysis that evaluates the effectiveness of the established monitoring protocols with 

recommendations identifying protocols to continue and protocols to change or add. The purpose 

of this analysis is to evaluate the effectiveness of monitoring as it relates to transportation 

maintenance needs and the status of migratory bird and T&E species resources and their 

habitats on the monitored area.  If recommendations are made to continue, modify, add, or 

change protocols and are mutually agreed to, then revisions to those requirements may be 

made.” 

 

 

 

 

 



 

From the USFWS Compatibility Determination for Retention of the Terminal Groin 

Page 8 

 

“After reviewing the available information and according to my best professional judgement, I 

find that issuing a permit to allow the Terminal Groin to remain in place cannot be found 

compatible without stipulations to offset impacts on refuge land accruing from the structure.  

Strict adherence to the stipulations listed in this determination and full compliance with all 

conditions of the permit are mechanisms for making a favorable Compatibility Determination.” 

(USFWS, Refuge Manager). 

  

Section II: Monitoring Conditions:  

  ii. (PAGE 14) “NCDOT shall be responsible for monitoring physical and 

biological parameters along transects across the beach at approximately 0.2 mile intervals 

within the zone described herein.  Monitoring transects shall include, but are not limited to, 

dunes to lowest point of the swash zone. 
1) Physical data collection shall include, but is not limited to, dune width and height, beach width, 

beach slope, sand grain size as determined through one sample from the upper beach, and one 

sample each from upper, mid- and lower swash zone, and mineral content of each swash zone 

sand.” 

2) Biological data collection shall include but is not limited to beach invertebrates such as ghost 

crab, swash zone invertebrates such as the mole crab, coquina, amphipods, and polychaete 

worms.  Observations on other wildlife should be recorded and reported to the refuge especially 

where nesting birds or turtles are observed.” 

 

 

NCDOT’s Requested Revisions to the PINWR Sand Surveys 

Based on efforts to reduce the cost of the Pea Island Sand surveys to the Division 1, B-2500 

budget, the NCDOT put together a plan for reducing the scope of the project to be discussed with 

the coastal monitoring team to determine how to do this while still maintaining the quality and 

integrity of data to satisfy the needs of the Refuge. 

 

After meetings with the Refuge staff and members of the Coastal Monitoring Team, the NCDOT 

makes the following requested changes to the sand survey protocols: 

 

 Reduce the number of transects to around 36.  The number and location of transects to 

include in the surveys each year will remain flexible and will be re-evaluated at the two 

annual meetings or as needed based on several factors such as storm events 

 Reduce heavy minerals analysis by eliminating the swash zone samples and eliminate 

minerals speciation 

 Beginning with the 2021 report, include each year an analysis of the relationship to grain 

size and heavy minerals to see if adequate information can be obtained through analysis 

of grain size alone. 

 Maintain status quo until the Refuge develops a protocol for making these 

changes to the project commitments as per the Terminal Groin easement 

document. 



 Maintain the January survey as this data will become increasingly important with 

the changing climate. 

We appreciate the understanding and collaboration of the Refuge on this request.  If you have 

any questions, please call me at (919) 707-6015 or email at jgconforti@ncdot.gov. 

 

 

Sincerely, 

 

 

 

John Conforti, REM 

Senior Project Manager 

NCDOT Project Management Unit 

 

mailto:jgconforti@ncdot.gov


 
 
 
 
 
 
  
 

             
             
             
             
             
             
                 
John Conforti, REM 
North Carolina Department of Transportation 
Project Management Unit – Divisions 1-4 & 6 
1582 Mail Service Center  
Raleigh, NC 27699-1582 
 

October 11, 2022 
Dear Mr. Conforti, 
 
Thank you for the proposed revisions to the future Pea Island National Wildlife Refuge (Refuge) 
sand surveys summarized in the letter dated July 27, 2022. On September 10, 2012, the Right of 
Way easement agreement between the U.S. Fish and Wildlife Services (Service) and the North 
Carolina Department of Transportation (NCDOT) was recorded to authorize the retention of the 
existing terminal groin and connected revetments on the northern terminus of the Refuge. This 
was a renewal of the permit dated June 20, 1989, for the NCDOT to use PINWR lands for the 
retention of the existing terminal groin and connected revetments on the northern terminus of the 
Refuge.  
 
The general stipulations as outlined in the 2012 easement in Section I(4) require the Service and 
NCDOT to develop monitoring programs to measure changes in the Refuge habitat and 
shoreline. Section II of the 2012 easement describes the monitoring conditions: “NCDOT shall 
monitor physical and biological parameters along transects across the beach at approximately 
0.2 mile intervals within the monitored area. Monitoring transects shall include, but are not 
limited to, dunes to lowest point of the swash zone. Physical data collection shall include, but is 
not limited to, dune width and height, beach width, beach slope, sand grain size as determined 
through one sample from the upper beach, and one sample each from the upper, midand lower 
swash zone, and mineral content of swash zone sand. Biological data collection shall include, 
but is not limited to beach invertebrates such as the ghost crab, swash zone invertebrates such as 
the mole crab, coquina, amphipods, and polychaete worms.” As noted in a letter from the 
Refuge to NCDOT dated January 24, 2012, the Refuge manager requested the physical and 
biological sand surveys be extended the entire length of the Refuge to replace previous Refuge 
Special Use Permit #2006-014. These changes resulted in 64 transects being surveyed quarterly 
along the entire oceanside shoreline of the Refuge. 
 

ALLIGATOR RIVER NATIONAL WILDLIFE REFUGE 
Pea Island National Wildlife Refuge 

P. O. Box 1969 
Manteo, North Carolina 27954 

(252) 473-1131 
 

 

 



We acknowledge the specific changes requested for the current sand surveys as listed in the letter 
from July 27, 2022. We recommend maintaining the quarterly surveys in January, April, July, 
and October. During early discussions, it was suggested NCDOT eliminate the January surveys 
due to low abundance levels of the invertebrates, but we believe with increasing winter 
temperatures this dataset will be important for tracking changes in the invertebrate communities. 
We acknowledge the heavy mineral analyses are a costly component of these efforts and 
recommend continuing evaluation of the contributions of these analyses within the annual 
Coastal Monitoring Report. As a first step, we also approve the requested reduction of collection 
of heavy mineral samples in the swash zone and to eliminate minerals speciation. Lastly, we also 
support the reduction sampled transects from 64 to 32 during each quarterly sampling effort. The 
number and location of the targeted samples for each survey year (i.e., calendar year) should be 
discussed at the prior Coastal Monitoring Team meeting(s), collectively agreed upon by the 
Coastal Monitoring Team, and summarized either in the annual Coastal Monitoring Report (as 
currently in Appendix A with the complete Physical and Biological Monitoring Report) or as a 
separate annual addendum to the report with similar existing reporting deadline and requirements 
(e.g., proposed sampling plan for the 2024 sampling year would be provided with the 2022 
Coastal Monitoring Report in October 2023 as currently scheduled). We support allowing the 
flexibility to annually determine which transects would provide the most critical information 
depending on multiple factors including storm events, ongoing transportation corridor projects, 
and changing resource management needs. We also acknowledge that it is possible the highest 
priority transects may be located where the transportation corridor no longer will exist (i.e., 
transects 600-630 in the most southern portion of the Refuge). 
 
The 2012 easement also created an opportunity for adaptative management and required the 
regular review of the monitoring protocols as described in Section II: “Once every five years the 
Monitoring Report will include a section with an analysis that evaluates the effectiveness of the 
established monitoring protocols with recommendations identifying protocols to continue and 
protocols to change or add. The purpose of this analysis is to evaluate the effectiveness of 
monitoring as it relates to transportation maintenance needs and the status of migratory bird 
and threatened and endangered species resources and their habitats on the monitored area. If 
recommendations are made to continue, modify, add, or change protocols and are mutually 
agreed to, then revisions to those requirements may be made.” We recommend any proposed 
changes to the biological monitoring surveys be collectively discussed at the biannual Coastal 
Monitoring Team meetings (usually held in March and November) and recorded in the annual 
Coastal Monitoring Report within Appendix A with the complete Physical and Biological 
Monitoring Report. 
 
We appreciate the communications and continued collaboration of the NCDOT and its 
contractors engaged in the coastal monitoring efforts on the Refuge. If you have any questions, 
please contact Refuge Biologist Dr. Becky Harrison at 252-423-1839 or 
rebecca_harrison@fws.gov. 
 
 
Sincerely, 
 
 
 
  
Pea Island National Wildlife Refuge Manager        



Figure 1



Figure 2
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