Appendix P

Additional Air Quality Information

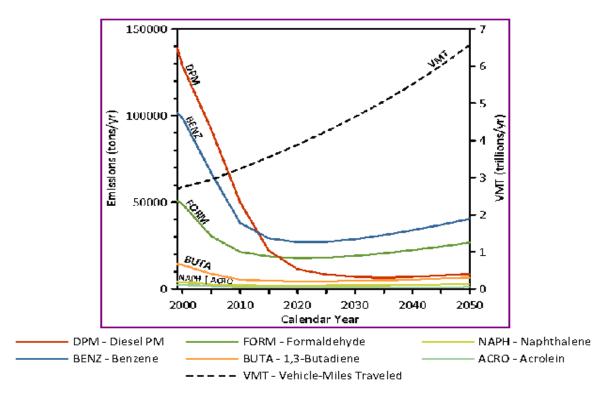
QUALITATIVE ANALYSIS FOR MOBILE SOURCE AIR TOXICS (MSAT)

In addition to the criteria air pollutants for which there are National Ambient Air Quality Standards (NAAQS), the US Environmental Protection Agency (USEPA) also regulates air toxics. Most air toxics originate from human-made sources, including on-road mobile sources, non-road mobile sources (e.g., airplanes), area sources (e.g., dry cleaners) and stationary sources (e.g., factories or refineries). Mobile Source Air Toxics (MSAT) are a subset of the 188 air toxics defined by the Clean Air Act. MSAT are compounds emitted from highway vehicles and non-road equipment. Some toxic compounds are present in fuel and are emitted to the air when the fuel evaporates or passes through the engine unburned. Other toxics are emitted from the incomplete combustion of fuels or as secondary combustion products. Metal air toxics also result from engine wear or from impurities in oil or gasoline.

A qualitative assessment of the likely impacts of MSAT is presented because the Southeast High Speed Rail (SEHSR) project has been determined to have an potential impact on vehicle miles traveled (VMT) or diesel traffic although not to the extent which would warrant a detailed analysis. This qualitative assessment was prepared using guidance derived in part from an Federal Highway Administration (FHWA) memorandum entitled *INFORMATION: Interim Guidance Update on Mobile Source Air Toxic Analysis in NEPA Documents*, dated September 30, 2009, found at: http://www.fhwa.dot.gov/environment/airtoxic/100109guidmem.htm.

Appendix B in the above guidance includes example language for a qualitative assessment, with specific examples for this type of improvement. The types of projects included in this category are those that serve to improve operations of highway, transit or freight without adding substantial new capacity or without creating a facility that is likely to meaningfully increase MSAT emissions. This language is included in the Qualitative Analysis Conclusions/Results section.

In addition to the qualitative assessment, a National Environmental Policy Act (NEPA) document for this category of project must include a discussion of information that is incomplete or unavailable for a project specific assessment of MSAT impacts, in compliance with the Council on Environmental Quality (CEQ) regulations (40 CFR 1502.22(b)). This discussion should explain how air toxics analysis is an emerging field and current scientific techniques, tools, and data are not sufficient to accurately estimate human health impacts that would result from a transportation project in a way that would be useful to decision-makers. Also in compliance with 40 CFR 150.22(b), it should contain information regarding the health impacts of MSAT. Appendix C of the above guidance includes example language to cover the information. This language is included in the CEQ Provisions section that covers Incomplete/Unavailable information for project-specific MSAT Health Impacts Analysis.


Background

Controlling air toxic emissions became a national priority with the passage of the Clean Air Act Amendments (CAAA) of 1990, whereby Congress mandated that USEPA regulate 188 air toxics, also known as hazardous air pollutants. The USEPA has assessed this expansive list in their latest rule on the Control of Hazardous Air Pollutants from Mobile Sources (Federal Register, Vol. 72, No. 37, page 8430, February 26, 2007) and identified a group of 93 compounds emitted from mobile sources that are listed in

their Integrated Risk Information System (IRIS) (http://www.epa.gov/ncea/iris/index.html). In addition, USEPA identified seven compounds with significant contributions from mobile sources that are among the national and regional-scale cancer risk drivers from their 1999 National Air Toxics Assessment (NATA) (http://www.epa.gov/ttn/atw/ nata1999/). These are acrolein, benzene, 1,3-butadiene, diesel particulate matter plus diesel exhaust organic gases (diesel PM), formaldehyde, naphthalene, and polycyclic organic matter. While FHWA considers these the priority mobile source air toxics, the list is subject to change and may be adjusted in consideration of future USEPA rules.

The 2007 USEPA rule mentioned above requires controls that will dramatically decrease MSAT emissions through cleaner fuels and cleaner engines. According to an FHWA analysis using USEPA's MOBILE6.2 model, even if vehicle activity (vehicle-miles traveled, VMT) increases by 145 percent as assumed, a combined reduction of 72 percent in the total annual emission rate for the priority MSAT is projected from 1999 to 2050, as shown in Figure 1.

Figure 1: NATIONAL MSAT EMISSION TRENDS 1999 - 2050 FOR VEHICLES OPERATING ON ROADWAYS USING USEPA'S MOBILE6.2 MODEL

Note:

(1) Annual emissions of polycyclic organic matter are projected to be 561 tons/yr for 1999, decreasing to 373 tons/yr for 2050.

(2) Trends for specific locations may be different, depending on locally derived information representing vehicle-miles traveled, vehicle speeds, vehicle mix, fuels, emission control programs, meteorology, and other factors

Source: U.S. Environmental Protection Agency. MOBILE6.2 Model run 20 August 2009.

Air toxics analysis is a continuing area of research. While much work has been done to assess the overall health risk of air toxics, many questions remain unanswered. In particular, the tools and techniques for assessing project-specific health outcomes as a result of lifetime MSAT exposure remain limited. These limitations impede the ability to evaluate how the potential health risks posed by MSAT exposure should be factored into project-level decision-making within the context of NEPA.

Nonetheless, air toxics concerns continue to be raised on highway projects during the NEPA process. Even as the science emerges, we are duly expected by the public and other agencies to address MSAT impacts in our environmental documents. The FHWA, USEPA, the Health Effects Institute (HEI), and others have funded and conducted research studies to try to more clearly define potential risks from MSAT emissions associated with highway projects. The FHWA will continue to monitor the developing research in this emerging field.

Qualitative Analysis Conclusion/Results

The SEHSR project is considered to be a transit improvement project (http://www.fhwa.dot.gov/environment/airtoxic/100109guidapb.htm - APPENDIX B-Examples of Prototype Language for Qualitative Project Level MSAT Discussions).

For each alternative, the amount of MSAT emitted would be proportional to the vehicle miles traveled, or VMT, assuming that other variables such as fleet mix are the same for each alternative. The VMT estimated for each of the Build Alternatives is lower than that for the No Build Alternative, because of the removal of highway vehicles that are predicted to use the improved transit system, even though the transit system attracts rerouted trips from elsewhere in the transportation network. This decrease in VMT would lead to lower MSAT emissions for the preferred action. Additionally, the lowering of emissions is further decreased by lower MSAT emission rates due to increased speeds as a result of less congestion on some of the regional roads. (According to USEPA's MOBILE6.2 model, emissions of all of the priority MSAT except for diesel particulate matter decrease as speed increases.) The extent to which these speed-related emissions decreases will augment the lowered VMT-related emissions decreases cannot be reliably projected due to the inherent deficiencies of technical models. Because the estimated VMT under each of the Build Alternatives are the same, it is expected there would be no appreciable difference in overall MSAT emissions among the various alternatives. Also, regardless of the alternative chosen, emissions will likely be lower than present levels in the design year as a result of USEPA's national control programs that are projected to reduce annual MSAT emissions by 72 percent between 1999 and 2050. Local conditions may differ from these national projections in terms of fleet mix and turnover, VMT growth rates, and local control measures. However, the magnitude of the USEPA-projected reductions is so great (even after accounting for VMT growth) that MSAT emissions in the study area are likely to be lower in the future in nearly all cases.

CEQ Provisions (Incomplete/Unavailable Information, Project-Specific MSAT Health Impacts)

In FHWA's view, information is incomplete or unavailable to credibly predict the project-specific health impacts due to changes in MSAT emissions associated with a proposed set of highway alternatives. The outcome of such an assessment, adverse or not, would be influenced more by the uncertainty introduced

into the process through assumption and speculation rather than any genuine insight into the actual health impacts directly attributable to MSAT exposure associated with a proposed action. Due to these limitations, the remainder of this section is included in accordance with CEQ regulations (40 CFR 1502.22(b)) regarding incomplete or unavailable information.

The USEPA is responsible for protecting the public health and welfare from any known or anticipated effect of an air pollutant. They are the lead authority for administering the Clean Air Act and its amendments and have specific statutory obligations with respect to hazardous air pollutants and MSAT. The USEPA is in the continual process of assessing human health effects, exposures, and risks posed by air pollutants. They maintain the Integrated Risk Information System (IRIS), which is "a compilation of electronic reports on specific substances found in the environment and their potential to cause human health effects" (USEPA, http://www.epa.gov/ncea/iris/ index.html). Each report contains assessments of non-cancerous and cancerous effects for individual compounds and quantitative estimates of risk levels from lifetime oral and inhalation exposures with uncertainty spanning perhaps an order of magnitude.

Other organizations are also active in the research and analyses of the human health effects of MSAT, including the HEI. Two HEI studies are summarized in Appendix D of FHWA's Interim Guidance Update on Mobile source Air Toxic Analysis in NEPA Documents. Among the adverse health effects linked to MSAT compounds at high exposures are cancer in humans in occupational settings; cancer in animals; and irritation to the respiratory tract, including the exacerbation of asthma. Less obvious is the adverse human health effects of MSAT compounds at current environmental concentrations (HEI, http://pubs.healtheffects.org/view.php?id=282) or in the future as vehicle emissions substantially decrease (HEI, http://pubs.healtheffects.org/view.php?id=306).

The methodologies for forecasting health impacts include emissions modeling; dispersion modeling; exposure modeling; and then final determination of health impacts - each step in the process building on the model predictions obtained in the previous step. All are encumbered by technical shortcomings or uncertain science that prevents a more complete differentiation of the MSAT health impacts among a set of project alternatives. These difficulties are magnified for lifetime (i.e., 70-year) assessments, particularly because unsupportable assumptions would have to be made regarding changes in travel patterns and vehicle technology (which affects emissions rates) over that time frame, since such information is unavailable. The results produced by the USEPA's MOBILE6.2 model, the California Environmental Protection Agency (Cal/EPA) Emfac2007 model, and the USEPA's DraftMOVES2009 model in forecasting MSAT emissions are highly inconsistent. Indications from the development of the MOVES model are that MOBILE6.2 significantly underestimates diesel particulate matter (PM) emissions and significantly overestimates benzene emissions.

Regarding air dispersion modeling, an extensive evaluation of USEPA's guideline CAL3QHC model was conducted in an NCHRP study (http://www.epa.gov/scram001/dispersion_alt.htm#hyroad), which documents poor model performance at ten sites across the country - three where intensive monitoring was conducted plus an additional seven with less intensive monitoring. The study indicates a bias of the CAL3QHC model to overestimate concentrations near highly congested intersections and underestimate concentrations near uncongested intersections. The consequence of this is a tendency to overstate the air quality benefits of mitigating congestion at intersections. Such poor model performance is less difficult

to manage for demonstrating compliance with NAAQS for relatively short time frames than it is for forecasting individual exposure over an entire lifetime, especially given that some information needed for estimating 70-year lifetime exposure is unavailable. It is particularly difficult to reliably forecast MSAT exposure near roadways, and to determine the portion of time that people are actually exposed at a specific location.

There are considerable uncertainties associated with the existing estimates of toxicity of the various MSAT, because of factors such as low-dose extrapolation and translation of occupational exposure data to the general population, a concern expressed by HEI (http://pubs.healtheffects.org/view.php?id=282). As a result, there is no national consensus on air dose-response values assumed to protect the public health and welfare for MSAT compounds, and in particular for diesel PM. The USEPA (http://www.epa.gov/ risk/basicinformation.htm#g) and the HEI (http://pubs.healtheffects.org/getfile.php?u=395) have not established a basis for quantitative risk assessment of diesel PM in ambient settings.

There is also the lack of a national consensus on an acceptable level of risk. The current context is the process used by the USEPA as provided by the Clean Air Act to determine whether more stringent controls are required in order to provide an ample margin of safety to protect public health or to prevent an adverse environmental effect for industrial sources subject to the maximum achievable control technology standards, such as benzene emissions from refineries. The decision framework is a two-step process. The first step requires USEPA to determine a "safe" or "acceptable" level of risk due to emissions from a source, which is generally no greater than approximately 100 in a million. Additional factors are considered in the second step, the goal of which is to maximize the number of people with risks less than 1 in a million due to emissions from a source. The results of this statutory two-step process do not guarantee that cancer risks from exposure to air toxics are less than 1 in a million; in some cases, the residual risk determination could result in maximum individual cancer risks that are as high as approximately 100 in a million. In a June 2008 decision, the US Court of Appeals for the District of Columbia Circuit upheld USEPA's approach to addressing risk in its two step decision framework. Information is incomplete or unavailable to establish that even the largest of highway projects would result in levels of risk greater than safe or acceptable.

Because of the limitations in the methodologies for forecasting health impacts described, any predicted difference in health impacts between alternatives is likely to be much smaller than the uncertainties associated with predicting the impacts. Consequently, the results of such assessments would not be useful to decision makers, who would need to weigh this information against project benefits, such as reducing traffic congestion, accident rates, and fatalities plus improved access for emergency response, that are better suited for quantitative analysis.