PIPE INSTALLATION AND PIPE CULVERTS:
(1-19-10)(Rev 1-18-11) SP3 R40 B

Revise the *Standard Specifications* as follows:

Replace Section 300 and Section 310 with the following:

SECTION 300
PIPE INSTALLATION

300-1 DESCRIPTION

Excavate, undercut, provide material, condition foundation, lay pipe, joint and couple pipe sections, and furnish and place all backfill material as necessary to install the various types of pipe culverts and fittings required to complete the project.

Install pipe in accordance with the detail in the plans.

Do not waste excavation unless permitted. Use suitable excavated material as backfill; or in the formation of embankments, subgrades, and shoulders; or as otherwise directed. Furnish disposal areas for the unsuitable material. The Engineer will identify excavated materials that are unsuitable.

Where traffic is to be maintained, install pipe in sections so that half the width of the roadway is available to traffic.

300-2 MATERIALS

Refer to Division 10:

<table>
<thead>
<tr>
<th>Item</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flowable Fill</td>
<td>1000</td>
</tr>
<tr>
<td>Select Materials</td>
<td>1016</td>
</tr>
<tr>
<td>Joint Materials</td>
<td>1032-9(G)</td>
</tr>
<tr>
<td>Engineering Fabrics</td>
<td>1056</td>
</tr>
</tbody>
</table>

Provide foundation conditioning material meeting the requirements of Article 1016-3 for Class V or VI Select Material as shown in the contract documents.

Provide bedding material meeting the requirements of Article 1016-3 for Class II (Type 1 only) or Class III Select Material as shown in contract documents.

Provide backfill material meeting the requirements of Article 1016-3 for Class II (Type 1 for Flexible Pipe) or Class III Select Material as shown in the contract documents.

Provide filter fabric meeting the requirements of Article 1056-2 for any type of engineering fabric.
Provide foundation conditioning fabric meeting the requirements of Article 1056-2 for Type 2 Engineering Fabric.

Do not use corrugated steel pipe in the following counties:

Beaufort, Bertie, Bladen, Brunswick, Camden, Carteret, Chowan, Columbus, Craven, Currituck, Dare, Gates, Hertford, Hyde, Jones, Martin, New Hanover, Onslow, Pamlico, Pasquotank, Pender, Perquimans, Tyrrell, and Washington.

300-3 UNLOADING AND HANDLING

Unload and handle pipe with reasonable care. Do not roll or drag metal pipe or plates over gravel or rock during handling. Take necessary precautions to ensure the method used in lifting or placing the pipe does not induce stress fatigue in the pipe. Use a lifting device that uniformly distributes the weight of the pipe along its axis or circumference. Repair minor damage to pipe when permitted. Remove pipe from the project that is severely damaged or is rejected as being unfit for use. Undamaged portions of a joint or section may be used where partial lengths are required.

300-4 PREPARATION OF PIPE FOUNDATION

Prepare the pipe foundation in accordance with the applicable method as shown in the contract documents, true to line and grade, and uniformly firm.

Camber invert grade an amount sufficient to prevent the development of sag or back slope in the flow line. The Contractor shall determine the amount of camber required and submit to the Engineer for approval.

Where material is found to be of poor supporting value or of rock and when the Engineer cannot make adjustment in the location of the pipe, undercut existing foundation material within the limits established on the plans. Backfill the undercut with foundation conditioning material. Encapsulate the foundation conditioning material with foundation conditioning fabric prior to placing bedding material. Overlap all transverse and longitudinal joints in the fabric at least 18 inches.

Maintain the pipe foundation in a dry condition.

300-5 INVERT ELEVATIONS

The proposed pipe culvert invert elevations shown on the Drainage Summary Sheets are based upon information available when the plans were prepared. If proposed invert elevations are adjusted during construction based upon actual conditions encountered, no claim for an extension of time for any reason resulting from this information will be allowed.
When a pipe culvert is to be installed in a trench and the average actual elevation of the pipe between drainage structures deviates from the average proposed elevation shown on the Drainage Summary Sheets by more than one foot a pay adjustment will be made as follows:

\[
\text{Pay Adjustment (per linear foot)} = [(\text{APE} - \text{AAE}) \pm 1 \text{ foot}] (0.15 \times \text{CUP})
\]

Where:
- \(\text{CUP} \) = Contract Unit Price of Pipe Culvert
- \(\text{AAE} \) = Average Actual Elevation \(\frac{\text{Actual Inlet elev.} + \text{Actual Outlet elev.}}{2} \)
- \(\text{APE} \) = Average Plan Elevation \(\frac{\text{Plan Inlet elev.} + \text{Plan Outlet elev.}}{2} \)

When the actual location of a pipe culvert is changed from the location shown on the plans, the Engineer will make a pay adjustment deemed warranted based upon the relation of the pipe culvert as shown on the plans to the finished roadway and the relation of the pipe culvert as constructed to the finished roadway.

The top elevation column on the drainage summary sheet indicates the flow elevation at the top of structures intended to collect surface water.

The top elevation column on drainage structures not intended to collect surface water indicates the elevation at the top of the cover.

300 -6 LAYING PIPE

The Department reserves the right to perform forensic testing on any installed pipe.

(A) **Rigid Pipe**

Concrete and welded steel pipe will be considered rigid pipe. Lay pipe on prepared foundation, bell or groove end upgrade with the spigot or tongue fully inserted. Check each joint for alignment and grade as the work proceeds.

Use flexible plastic joint material except when material of another type is specified in the contract documents. Joint material of another type may be used when permitted.

Repair lift holes in concrete pipe, if present. Thoroughly clean and soak the lift hole and completely fill the void with an approved non-shrink grout. Submit alternate details for repairing lift holes to the engineer for review and approval.

For all pipes 42 inches in diameter and larger, wrap filter fabric around all pipe joints. Extend fabric at least 12 inches beyond each side of the joint. Secure fabric against the outside of the pipe by methods approved by the Engineer.

(B) **Flexible Pipe (Except Structural Plate Pipe)**
Corrugated steel, corrugated aluminum, corrugated polyethylene (HDPE), and polyvinylchloride (PVC) pipe will be considered flexible pipe. Place flexible pipe carefully on the prepared foundation starting at the downstream end with the inside circumferential laps pointing downstream and with the longitudinal laps at the side or quarter points.

Handle coated corrugated steel pipe with special care to avoid damage to coatings.

Join pipe sections with coupling band, fully bolted and properly sealed. Provide coupling bands for annular and helical corrugated metal pipe with circumferential and longitudinal strength sufficient to preserve the alignment, prevent separation of the sections, and prevent backfill infiltration. Match-mark all pipe 60 inches or larger in diameter at the plant for proper installation on the project.

At locations indicated in the plans, corrugated steel pipe sections shall be jointed together with rod and lug coupling bands, fully bolted. Sleeve gaskets shall be used in conjunction with rod and lug couplings and the joints properly sealed. Coupling bands shall provide circumferential and longitudinal strength sufficient to preserve the alignment, prevent separation of the sections and prevent infiltration of backfill material.

300-7 BEDDING AND BACKFILLING

Loosely place bedding material, in a uniform layer, a depth equal to the inside diameter of the pipe divided by 6 or 6 inches, whichever is greater. Leave bedding material directly beneath the pipe uncompacted and allow pipe seating and backfill to accomplish compaction. Excavate recesses to receive the bells where bells and spigot type pipe is used.

Place fill around the pipe in accordance with the applicable method shown on the plans in layers not to exceed 6 inches loose unless otherwise permitted. Compact to the density required by Subarticle 235-4(C). Approval of the backfill material is required prior to its use. Use select material as shown in the contract documents.

Take care during backfill and compaction operations to maintain alignment and prevent damage to the joints. Keep backfill free from stones, frozen lumps, chunks of highly plastic clay, or other objectionable material.

Grade and maintain all pipe backfill areas in such a condition that erosion or saturation will not damage the pipe foundation or backfill.

Excavatable flowable fill may be used for backfill when approved by the Engineer. When using excavatable flowable fill, ensure that the pipe is not displaced and does not float during backfill. Submit methods for supporting the pipe and material placement to the Engineer for review and approval.

Do not operate heavy equipment over any pipe until it has been properly backfilled with a minimum 3 feet of cover. Place, maintain, and finally remove the required cover that is above
the proposed finished grade at no cost to the Department. Remove and replace, at no cost to the Department, pipe that becomes misaligned, shows excessive settlement, or has been otherwise damaged by the Contractor's operations.

300-8 INSPECTION AND MAINTENANCE

Prior to final acceptance, the Engineer will perform random video camera and or mandrel inspections to ensure proper jointing and that deformations do not exceed allowable limits. Replace pipes having cracks greater than 0.1 inches or deflections greater than 7.5 percent. Repair or replace pipes with cracks greater than 0.01 inches, exhibiting displacement across a crack, exhibiting bulges, creases, tears, spalls, or delamination. Maintain all pipe installations in a condition such that they will function continuously from the time the pipe is installed until the project is accepted.

300-9 MEASUREMENT AND PAYMENT

General

No measurement will be made of any work covered by this section except as listed below. Removal and disposal of existing pavement is a part of the excavation for the new pipe culvert installation. Repair of the pavement will be made in accordance with Section 654.

Foundation Conditioning

Using Local Material

Undercut excavation is all excavation removed by undercutting below the bottom of the trench as staked. Undercut Excavation will be measured as the actual number of cubic yards of undercut excavation, measured in its original position and computed by the average end area method, that has been removed as called for in the contract and will be paid for at double the contract unit price for Unclassified Excavation as provided in Article 225-7.

Local material used for conditioning the foundation will be measured and paid for in accordance with Article 225-7 for Unclassified Excavation or in accordance with Article 230-5 for Borrow Excavation depending on the source of the material.

Local material used to replace pipe undercut excavation will be measured and paid for in accordance with Article 225-7 or Article 230-5.

Using Other Than Local Material

No measurement and payment will be made for Undercut Excavation. The material used to replace pipe undercut excavation will be classified as foundation conditioning material.
Foundation Conditioning Material, Minor Structures will be measured and paid for as the actual number of tons of this material weighed in trucks on certified platform scales or other certified weighing devices.

No direct payment will be paid for undercut excavation. Payment at the contract unit price for Foundation Conditioning Material, Minor Structures will be full compensation for all work of pipe undercut excavation.

Foundation Conditioning Fabric

Foundation Conditioning Fabric will be measured and paid for in square yards. The measurement will be based on the theoretical calculation using length of pipe installed and two times the standard trench width. No separate measurement will be made for overlapping fabric or the vertical fabric dimensions required to encapsulate the foundation conditioning material.

Bedding and Backfill - Select Material

No measurement will be made for select bedding and backfill material required in the contract documents. The select bedding and backfill material will be included in the cost of the installed pipe.

Where unclassified excavation or borrow material meets the requirements for select bedding and backfill and is approved for use by the Engineer, no deductions will be made to these pay items to account for use in the pipe installation.

Payment will be made under:

<table>
<thead>
<tr>
<th>Pay Item</th>
<th>Pay Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundation Conditioning Material, Minor Structures</td>
<td>Ton</td>
</tr>
<tr>
<td>Foundation Conditioning Fabric</td>
<td>Square Yard</td>
</tr>
</tbody>
</table>

SECTION 310
PIPE CULVERTS

310-1 DESCRIPTION

Furnish and install drainage pipe at locations and size called for in the contract documents. The work includes construction of joints and connections to other pipes, endwalls, and drainage structures.

310-2 MATERIALS

Refer to Division 10:

<table>
<thead>
<tr>
<th>Item</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plain Concrete Pipe Culvert</td>
<td>1032-9(B)</td>
</tr>
<tr>
<td>Reinforced Concrete Pipe Culvert</td>
<td>1032-9(C)</td>
</tr>
</tbody>
</table>
Suppliers that provide metal pipe culverts, fittings, and all other accessories covered by this section shall meet the requirements of the Department’s Brand Certification program for metal pipe culverts, and be listed on the Department’s pre-approved list for suppliers of metal pipe culvert.

Do not use corrugated steel pipe in the following counties:

Beaufort, Bertie, Bladen, Brunswick, Camden, Carteret, Chowan, Columbus, Craven, Currituck, Dare, Gates, Hertford, Hyde, Jones, Martin, New Hanover, Onslow, Pamlico, Pasquotank, Pender, Perquimans, Tyrrell, and Washington.

310-3 PIPE INSTALLATION

Install pipe, pipe tees, and elbows in accordance with Section 300.

310-4 SIDE DRAIN PIPE

Side drain pipe is defined as storm drain pipe running parallel to the roadway to include pipe in medians, outside ditches, driveways, and under shoulder berm gutter along outside shoulders greater than 4 feet wide.

Where shown in the plans, side drain pipe may be Class II Reinforced Concrete Pipe, aluminized corrugated steel pipe, corrugated aluminum alloy pipe, HDPE pipe, or PVC pipe. Corrugated steel pipe is restricted in the counties listed in Article 310-2. Install side drain pipe in accordance to Section 300. Cover for side drain pipe shall be at least one foot.

310-5 PIPE END SECTIONS

Choose which material to use for the required end sections. Both corrugated steel and concrete pipe end sections will work on concrete pipe, corrugated steel pipe, and HDPE smooth lined corrugated plastic pipe.
Pipe will be measured and paid as the actual number of linear feet of pipe that has been incorporated into the completed and accepted work. Measurement of pipe will be made by counting the number of joints used and multiplying by the length of the joint to obtain the number of linear feet of pipe installed and accepted. Measurements of partial joints will be made along the longest length of the partial joint to the nearest 0.1 foot. Select bedding and backfill material will be included in the cost of the installed pipe.

Pipe End Sections, Tees, Elbows, and Eccentric Reducers will be measured and paid as the actual number of each of these items that have been incorporated into the completed and accepted work.

Payment will be made under:

<table>
<thead>
<tr>
<th>Pay Item</th>
<th>Pay Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>__" R.C. Pipe Culverts, Class _____</td>
<td>Linear Foot</td>
</tr>
<tr>
<td>__" x __" x __" R.C. Pipe Tees, Class _____</td>
<td>Each</td>
</tr>
<tr>
<td>__" R.C. Pipe Elbows, Class _____</td>
<td>Each</td>
</tr>
<tr>
<td>__" C.A.A. Pipe Culvert, __" Thick</td>
<td>Linear Foot</td>
</tr>
<tr>
<td>__" x __" x __" C.A.A. Pipe Tees, __" Thick</td>
<td>Each</td>
</tr>
<tr>
<td>__" C.A.A. Pipe Elbows, __" Thick</td>
<td>Each</td>
</tr>
<tr>
<td>__" C.S. Pipe Culverts, __" Thick</td>
<td>Linear Foot</td>
</tr>
<tr>
<td>__" x __" C.S. Pipe Arch Culverts, __" Thick</td>
<td>Linear Foot</td>
</tr>
<tr>
<td>__x __" x __" C.S. Pipe Tees, __" Thick</td>
<td>Each</td>
</tr>
<tr>
<td>__" C.S. Pipe Elbows, __" Thick</td>
<td>Each</td>
</tr>
<tr>
<td>__" x __" C.S. Eccentric Reducers, __" Thick</td>
<td>Each</td>
</tr>
<tr>
<td>__" HDPE Pipe</td>
<td>Linear Foot</td>
</tr>
<tr>
<td>__" PVC Pipe</td>
<td>Linear Foot</td>
</tr>
<tr>
<td>__" Side Drain Pipe</td>
<td>Linear Foot</td>
</tr>
<tr>
<td>__" Side Drain Pipe Elbows</td>
<td>Each</td>
</tr>
<tr>
<td>__" Pipe End Section</td>
<td>Each</td>
</tr>
</tbody>
</table>