BRIDGE APPROACH FILLS

Approach Slab

Asphalt Paving

Outlet Pad

Wingwall

Bridge Rail

End Bent

Drain

Approach Slab

Bridge Deck

8" x 4" Lip Curb

Shoulder

Travel Lanes

Asphalt Paving

8" x 4" Lip Curb

Shoulder

Type I - Standard Approach Fill

Plan View

Approach Slab

State of North Carolina
Department of Transportation
Division of Highways
Raleigh, N.C.
SECTION A-A

Bridge Rail

Approach Slab

End Bent Girder

Bender End Bent

Slope Protection

Limits of Standard Approach Fill

Type 1 Geotextile

4'-0"

18"

See Inset 'A'

6" Dia Solid PVC Pipe

Outlet Pad

 Std. Dwg. 815.03

Type 1 Geotextile

Select Material

Geotextile

Type 1

PVC Pipe

Perforated

6" Dia

(See Inset 'A')

End Bent Cap

Select Material

6" Dia

Perforated

PVC Pipe

Wingwall

Fill Slope

Fill Slope

1'-8"

(Min)

INSET 'A'

SECTION B-B

Bridge Rail

Approach Slab

8" x 4" Lip Curb

Approach Slab

Wingwall

Wingwall

Inlet Pad

Outlet Pad

Select Material

PVC Pipe

6" Dia

Solid

(See Inset 'A')

3'-0"

18"

6" Dia

Perforated

PVC Pipe

6" Dia
Approach Slab

Type II - Modified Approach Fill

Bridge Deck

Drain

Approach Slab

8" x 4" Lip Curb

End Bent

胝l Curs

Asphalt Paving

Outlet Pad

Std. Dwg. 815.03

Bridge Rail

Wingwall

TYP E II - MODIFIED APPROACH FILL

LIMITS OF MODIFIED APPROACH FILL

PLAN VIEW

APPROACH SLAB

STATE OF NORTH CAROLINA
DEPT. OF TRANSPORTATION
DIVISION OF HIGHWAYS
RALEIGH, N.C.

422.02 SHEET 1 OF 2
Approach Slab

Plan View

Bridge Approach Fill

Wingwall

Asphalt Paving

8" x 4" Lip Curb

Outlet Pad

ASD. Dwg. 815.03

Plan View

Approach Slab

Bridge Deck

Integral End Bent

Bridge Rail

8" x 4" Lip Curb

Location Varies

Asphalt Paving

Roadway Standard Drawing for Integral Abutment

For Alternate Approach Fill

Type A - Integral Abutment

PLAN VIEW

APPROACH SLAB

State of North Carolina

Division of Highways

Dept. of Transportation

North Carolina

State of

Raleigh, N.C.

Division of Highways

Dept. of Transportation

North Carolina

Sheet 1 of 4

422.03
SECTION A-A FOR ALTERNATE TO

TYPE I STANDARD APPROACH FILL

(As Shown on Sheet 4 of 4)

NOTE: Temporary geotextile walls are designed for a maximum eccentric surcharge pressure of 6000 psf for the offset shown. Surcharge loads from construction equipment, e.g., cranes that exceed 6000 psf are the Contractor's responsibility.

SECTION B-B

SECTION C-C
NOTE: Temporary geotextile walls are designed for a maximum eccentric surcharge pressure of 6000 psf for the offset shown. Surcharge loads from construction equipment, e.g., cranes that exceed 6000 psf are the Contractor's responsibility.

SECTION A-A FOR ALTERNATE TO TYPE II MODIFIED APPROACH FILL
(*H As Shown on Sheet 4 of 4)

SECTION B-B
TEMPORARY GEOTEXTILE WALL DETAILS

(*Perforations Pointing Down and Pipes Sloped to Drain)

NOTE: Place top (first) reinforcement layer 6" below top of wall regardless of vertical spacing for underlying reinforcement layers. As shown in insets above, it is not necessary to wrap the top layer of geotextile reinforcement at the wall face.

INSET 'A'

ALTERNATE INSET 'A'

(When Bottom Portion of Integral End Bent is Constructed Before Temporary Wall and End Bent Piles are at Least 25' Long or Drilled In)

<table>
<thead>
<tr>
<th>WALL HEIGHT</th>
<th>REINF. LENGTH</th>
<th>WIDE WIDTH ($)</th>
<th>TYPE 5 GEOTEXTILE</th>
</tr>
</thead>
<tbody>
<tr>
<td>H (ft)</td>
<td>L (ft)</td>
<td>ULTIMATE (MD)</td>
<td>Welded Wire</td>
</tr>
<tr>
<td>< 8</td>
<td>8</td>
<td>5000</td>
<td>Reinforcement</td>
</tr>
<tr>
<td>8 TO 12</td>
<td>= H</td>
<td>8</td>
<td>4" X 4" Min</td>
</tr>
</tbody>
</table>

WELDED WIRE FACING

4" X 4" Min
W4 X W4 Min

Use a Strut at Each End of Facing Regardless of Length
Cut Slits in Geotextiles Perpendicular to Wall Face For Struts