
$W_{1}=1^{\prime}-3^{\prime \prime}$
W2 = 10" FOR VERTICAL CLEARANCE THRU 10'-0"
W2 = 12" FOR VERTICAL CLEARANCE OVER 10'-0"
$W 3=L-W 2-W 4$
$W 4=(X)$ SINa
W5 = WIDTH OF FTG. AT END OF WING $=\frac{H 3+F 1}{2}$ W5t (toe) $=(1 / 3$ W5) - W2 (MIN. 8")
W5h (heal) = $2 / 3$ W5 (MIN.9")
W6 = WIDTH OF FTG. AT END OF WING $=\frac{H 1+F 1}{2}$ W6t(toe) $=(1 / 3$ W6) - W2 (MIN. 8")
W6h (heal) $=2 / 3$ W6 (MIN. 9")
$W 6=W 6 t+W 6 h+W 2$
$W 7=(X) \cos a$

L $=\left(\right.$ SLOPE $\left.^{*}\right)(H 2)$
$L \approx W 2+W 3+W 4$
H1 = VERT. CLEARANCE + ROOF SLAB + 2"
X = WING LENGTH (SEE FIGURE 9-12)
$\mathrm{H} 4=\mathrm{H} 1-\mathrm{H} 3$
LAYOUT FOR TURNED BACK CULVERT WINGS

FIGURE 9-14

