List of Figures

1 Plan Preparation
- 1-1 Plan Assembly Outline
- 1-2 Accuracy for Plan Sheets
- 1-3 Drawing Scales
- 1-4 Line Symbology
- 1-5 Skew Angle Designation
- 1-6 Trigonometric Functions
- 1-7 Properties of A Circle
- 1-8 Horizontal Curve/Tangent Offset
- 1-9 Vertical Parabolic Curve - Equal Tangent
- 1-10 Vertical Parabolic Curve - Equal Tangent (Example)

2 Design Data
- 2-1 Seismic Zone – LRFD Bridge Design Specifications
- 2-2 Soil Profile Types
- 2-3 Design Traffic Lane

3 Materials

4 Preliminary Drawings
- 4-1 Example Preliminary General Drawing (Sheet 1 of 2)
- 4-2 Example Preliminary General Drawing (Sheet 2 of 2)
- 4-3 Construction Limits Sketches for Bridges and Culverts
- 4-4 Example Construction Limit Sketch
- 4-5 Example Coast Guard Permit Sketch (Drawing 1)
- 4-6 Example Coast Guard Permit Sketch (Drawing 2)
- 4-7 Example Coast Guard Permit Sketch (Drawing 3)
- 4-8 Railroad Erosion Control Detail

5 General Drawings
- 5-1 Example General Drawing (Plan and Section Views)
- 5-2 Example General Drawing (Foundation Layout Sketch)
- 5-3 Example General Drawing (Long Chord Layout)
- 5-4 Example General Drawing (Location Sketch and Bill of Material)
- 5-5 Example General Drawing (Stream Crossing - Location Sketch)
6 **SUPERSTRUCTURES**

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-1</td>
<td>Bridge Superstructure Depth</td>
</tr>
<tr>
<td>6-2</td>
<td>Slab Design Table (Slab Depth and ‘A’ Bars, Sheet 1 of 2)</td>
</tr>
<tr>
<td>6-3</td>
<td>Slab Design Table (Slab Depth and ‘A’ Bars, Sheet 2 of 2)</td>
</tr>
<tr>
<td>6-4</td>
<td>Slab Design Table (BBU Depth and ‘B’ Bars, Sheet 1 of 2)</td>
</tr>
<tr>
<td>6-5</td>
<td>Slab Design Table (BBU Depth and ‘B’ Bars, Sheet 2 of 2)</td>
</tr>
<tr>
<td>6-6</td>
<td>Suggested Maximum Superstructure Overhangs</td>
</tr>
<tr>
<td>6-7</td>
<td>Slab Design Worksheet (Steel Girder)</td>
</tr>
<tr>
<td>6-8</td>
<td>Slab Design Worksheet (Prestressed Concrete Girder)</td>
</tr>
<tr>
<td>6-9</td>
<td>Skew Limit Guidelines for Precast Concrete Deck Panels</td>
</tr>
<tr>
<td>6-10</td>
<td>Vertical Concrete Barrier Rail on Cored Slab</td>
</tr>
<tr>
<td>6-11</td>
<td>Vertical Concrete Barrier Rail on Box Beam</td>
</tr>
<tr>
<td>6-12</td>
<td>Drain Details (Prestressed Concrete Girders)</td>
</tr>
<tr>
<td>6-13</td>
<td>Drain Connector Details (Steel Girders)</td>
</tr>
<tr>
<td>6-14</td>
<td>Drain Connector Detail with Scupper (Prestressed Concrete Girders)</td>
</tr>
<tr>
<td>6-15</td>
<td>Drain Connector Detail with Scupper (Steel Girders)</td>
</tr>
<tr>
<td>6-16</td>
<td>Section Through Sidewalk</td>
</tr>
<tr>
<td>6-17</td>
<td>Sidewalk on Cored Slabs</td>
</tr>
<tr>
<td>6-18</td>
<td>Sidewalk on Box Beams</td>
</tr>
<tr>
<td>6-19</td>
<td>Permanent Concrete Median Strip on Bridge</td>
</tr>
<tr>
<td>6-20</td>
<td>Barrier Rail Details (without Wearing Surface)</td>
</tr>
<tr>
<td>6-21</td>
<td>Barrier Rail - End of Rail Details (without Wearing Surface)</td>
</tr>
<tr>
<td>6-22</td>
<td>42” (1067mm) Barrier Rail Details</td>
</tr>
<tr>
<td>6-23</td>
<td>Barrier Rail - End of 42” (1067mm) Rail Details</td>
</tr>
<tr>
<td>6-24</td>
<td>Detail for Computing Length of S1 Bar</td>
</tr>
<tr>
<td>6-25</td>
<td>Location of Adhesively Anchored Dowels for Barrier Rails</td>
</tr>
<tr>
<td>6-26</td>
<td>Example Concrete Barrier Rail Standard</td>
</tr>
<tr>
<td>6-27</td>
<td>Concrete Median Barrier Details (for Rigid Pavement)</td>
</tr>
<tr>
<td>6-28</td>
<td>Concrete Median Barrier Details (for Rigid Pavement)</td>
</tr>
<tr>
<td>6-29</td>
<td>Median Barrier Rail Cover Plate Details</td>
</tr>
<tr>
<td>6-30</td>
<td>Median Barrier Rail Cover Plate Details</td>
</tr>
<tr>
<td>6-31</td>
<td>Bar Types - Concrete Median Barrier</td>
</tr>
<tr>
<td>6-32</td>
<td>End Post for Three Bar Rail</td>
</tr>
<tr>
<td>6-33</td>
<td>Parapet and End Post for Two Bar Rail</td>
</tr>
<tr>
<td>6-34</td>
<td>Parapet and End Post for One Bar Rail</td>
</tr>
<tr>
<td>6-35</td>
<td>Parapet and End Post for One or Two Bar Rail</td>
</tr>
<tr>
<td>6-35a</td>
<td>32" Alaska Rail on a Deck Slab</td>
</tr>
<tr>
<td>6-35b</td>
<td>42" Oregon Rail on a Deck Slab</td>
</tr>
<tr>
<td>6-35c</td>
<td>Curb and End Post for 32" Alaska Rail</td>
</tr>
<tr>
<td>6-35d</td>
<td>Curb and End Post for 42" Oregon Rail</td>
</tr>
<tr>
<td>6-36</td>
<td>One and Two Bar Metal Rail on Cored Slab Units</td>
</tr>
<tr>
<td>6-37</td>
<td>One and Two Bar Metal Rail on Box Beam Units</td>
</tr>
<tr>
<td>6-37a</td>
<td>32" Alaska Rail on Cored Slabs and Box Beams</td>
</tr>
<tr>
<td>6-37b</td>
<td>42" Oregon Rail on Cored Slabs and Box Beams</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>6-38</td>
<td>Wisconsin DOT Pouring Sequence (Two and Three Spans)</td>
</tr>
<tr>
<td>6-39</td>
<td>Wisconsin DOT Pouring Sequence (Any Number of Spans)</td>
</tr>
<tr>
<td>6-40</td>
<td>Pouring Sequence for Continuous for Live Load Deck Slabs</td>
</tr>
<tr>
<td>6-41</td>
<td>Optional Pouring Sequence – Prestressed Concrete Superstructure</td>
</tr>
<tr>
<td>6-42</td>
<td>Transverse Construction Joint in Deck Slab</td>
</tr>
<tr>
<td>6-43</td>
<td>Foam Joint Seals for Concrete and Steel Superstructures</td>
</tr>
<tr>
<td>6-44</td>
<td>Intentionally Left Blank</td>
</tr>
<tr>
<td>6-45</td>
<td>Typical Foam Joint Seal Details</td>
</tr>
<tr>
<td>6-46</td>
<td>Sidewalk with Foam Joint Seal</td>
</tr>
<tr>
<td>6-47</td>
<td>Sidewalk with Foam Joint Seal Details</td>
</tr>
<tr>
<td>6-48</td>
<td>Sidewalk Cover Plate Details with Foam Joint Seal</td>
</tr>
<tr>
<td>6-49</td>
<td>Example Expansion Joint Seal Details Standard (Sheet 1)</td>
</tr>
<tr>
<td>6-50</td>
<td>Example Expansion Joint Seal Details Standard (Sheet 2)</td>
</tr>
<tr>
<td>6-51</td>
<td>Example Expansion Joint Seal Details Standard (Sheet 3)</td>
</tr>
<tr>
<td>6-52</td>
<td>Example Calculations for “Movement and Setting at Joint” Table and Detail of #4 (#13) J1 Bar</td>
</tr>
<tr>
<td>6-53</td>
<td>Plan of Expansion Joint Seal at Barrier Rail - Left Side</td>
</tr>
<tr>
<td>6-54</td>
<td>Plan of Expansion Joint Seal at Sidewalk - Left Side</td>
</tr>
<tr>
<td>6-55</td>
<td>Plan View of Sidewalk Cover Plate for Expansion Joint Seals</td>
</tr>
<tr>
<td>6-56</td>
<td>Pavement Marking Alignment Sketch (Example)</td>
</tr>
<tr>
<td>6-57</td>
<td>End Bent Joint Details (for Steel Superstructure with Modular Expansion Joint)</td>
</tr>
<tr>
<td>6-58</td>
<td>Bent Diaphragm Detail (for Steel Superstructure with Modular Expansion Joint)</td>
</tr>
<tr>
<td>6-59</td>
<td>Sidewalk Cover Plate Details for Modular Expansion Joint Seals</td>
</tr>
<tr>
<td>6-60</td>
<td>Plan of Modular Expansion Joint Seal at Sidewalk - Left Side</td>
</tr>
<tr>
<td>6-61</td>
<td>Overlay Type Flow Chart</td>
</tr>
<tr>
<td>6-62</td>
<td>Construction Elevations Sketch (Bottom of Slab Example)</td>
</tr>
<tr>
<td>6-63</td>
<td>Construction Elevations Sketch (Approach Slab Example)</td>
</tr>
<tr>
<td>6-64</td>
<td>Construction Elevations Sketch (Preliminary Header Example)</td>
</tr>
<tr>
<td>6-65</td>
<td>Intentionally Left Blank</td>
</tr>
<tr>
<td>6-66</td>
<td>Dimensions, Area, and Design Data for Prestressed Concrete Girders (AASHTO Types II through IV)</td>
</tr>
<tr>
<td>6-67</td>
<td>Dimensions, Area, and Design Data for Prestressed Concrete Girders (AASHTO Types V and VI, Modified Bulb Tees)</td>
</tr>
<tr>
<td>6-68</td>
<td>Details for Type II Prestressed Concrete Girder Without Notch</td>
</tr>
<tr>
<td>6-69</td>
<td>Details for Type III Prestressed Concrete Girder Without Notch</td>
</tr>
<tr>
<td>6-70</td>
<td>Girder Layout Sheet (Example)</td>
</tr>
<tr>
<td>6-71</td>
<td>Top of Slab Reinforcement Layout (Continuous for Live Load Deck Slab with Precast Concrete Deck Panels)</td>
</tr>
<tr>
<td>6-72</td>
<td>Top of Slab Reinforcement Layout (Continuous for Live Load Deck Slab with Metal Stay-in-Place Forms)</td>
</tr>
<tr>
<td>6-73</td>
<td>Buildup over Prestressed Concrete Girder</td>
</tr>
<tr>
<td>6-74</td>
<td>Section Through Bent Diaphragm (Prestressed Concrete Girders)</td>
</tr>
<tr>
<td>6-75</td>
<td>Typical Joint Seal Detail</td>
</tr>
<tr>
<td>6-75a</td>
<td>Top Flange Clip Details (Modified Bulb Tees)</td>
</tr>
<tr>
<td>6-76</td>
<td>Half-Sections Through Bent Diaphragm</td>
</tr>
</tbody>
</table>
6-77 Bent Diaphragm Blockout Detail
6-78 Typical Intermediate Diaphragm for Prestressed Concrete Girders (AASHTO Types II through IV)
6-79 Typical Intermediate Diaphragm for Prestressed Concrete Girders (AASHTO Types V and VI, Modified Bulb Tees)
6-80 Grouted Recess for End of Tie Rod
6-81 Cored Slab Properties
6-81a Cored Slab Properties
6-82 Cored Slab Typical Section (Example)
6-83 Cored Slab Span Layout (Example)
6-84 Cored Slab with Barrier Rail Details (Example)
6-85 Part Plan End of Cored Slab Unit
6-86 Grouted Recess at End of Post-Tensioned Strand for Cored Slabs
6-86a Grouted Recess at End of Double Post Tensioned Strands for Cored Slabs
6-87 View of Cored Slab Superstructure
6-88 Box Beam Properties
6-88a Box Beam Properties
6-89 Plan View of Box Beam Superstructure Units
6-90 Slab and Buildup Dimensions (Steel Girders)
6-91 Top Flange Clip Details
6-92 Typical Flange and Web Butt Joints
6-93 End Bent Joint Details (Steel Girders)
6-94 Section Through Bent Diaphragm
6-95 Bent Diaphragm for Rolled Beams Through 27 in (690 mm)
6-96 Bent Diaphragm for Rolled Beams 30 in (760 mm) Through 33 in (840 mm)
6-97 Bent Diaphragm for Rolled Beams 36 in (920 mm)
6-98 Bent Diaphragm for Plate Girders Through 48 in (1220 mm)
6-99 Bent Crossframe for Plate Girders More Than 48 in (1220 mm) Without Lateral Bracing
6-100 Bent Crossframe for Plate Girders More Than 48 in (1220 mm) With Lateral Bracing
6-101 Connector Plate Details
6-102 Intermediate Diaphragm for Rolled Beams Through 27 in (690 mm)
6-103 Intermediate Diaphragm for Rolled Beams 30 in (760 mm) Through 33 in (840 mm)
6-104 Intermediate Diaphragm for Rolled Beams 36 in (920 mm)
6-105 Intermediate Diaphragm for Plate Girders Through 48 in (1220 mm)
6-106 Intermediate Diaphragm for Plate Girders 49 in (1245 mm) Through 60 in (1525 mm)
6-107 Optional Intermediate Crossframe for Plate Girders More Than 60 in (1525 mm)
Without Lateral Bracing
6-108 Intermediate Crossframe for Plate Girders More Than 60 in (1525 mm) Without Lateral Bracing
6-109 Intermediate Crossframe for Plate Girders More Than 60 in (1525 mm) With Lateral Bracing
6-110 Typical Lateral Bracing Details
6-111 Typical Lateral Bracing Details at Intermediate Stiffeners
6-112 Stiffener Details
6-113 Weld Termination Details
6-114 Web Stiffener or Connector Plate Weld Detail
6-115 Gusset Plate Details
6-116 Shear Connectors
6-117 Typical Field Splice Details
6-118 Charpy V-Notch Tests for Continuous Plate Girders
6-119 Integral End Bent Details (Steel Superstructure)
6-120 Alternate Integral End Bent Details (Steel Superstructure)
6-120a Sole Plate Details for Alternate Integral End Bents
6-121 Integral End Bent Details (PCG Superstructure)
6-122 Integral End Bent Details (PCG Superstructure)
6-123 Integral End Bent Details (PCG Superstructure)
6-124 Temperature Setting Detail
6-125 Disc Bearing Design Data
6-126 Disc Bearing Setting Details (Curved Girder Example)
6-127 Intentionally Left Blank
6-128 Intentionally Left Blank
6-129 TFE Bearing Details
6-130 Fixed Bearing Assembly Details
6-131 Surface Finish for Bearing Plates
6-132 Slot Size for Expansion End of Span
6-133 LRFR Flow Chart
6-134 LRFR Load Factors and Prestressed Concrete Stress Limits
6-135 Drip Bead Details

7 SUBSTRUCTURES
7-1 Cap Length for Cored Slab & Box Beam Bridges
7-2 Reinforcing Steel in Top of Stepped Bent Caps
7-3 End Bent #1 Layout (Skew < 90°)
7-4 End Bent #2 Layout (Skew < 90°)
7-5 End Bent #1 Layout (Skew = 90°)
7-6 End Bent #2 Layout (Skew = 90°)
7-7 End Bent #1 Layout (Skew > 90°)
7-8 End Bent #2 Layout (Skew > 90°)
7-9 Sloped End Bent Cap
7-10 Chamfering Acute End Bent Corner
7-11 Temporary Drainage at End Bent
7-12 Backwall Detail
7-13 Reinforcing for Turned Back Wing
7-13a Reinforcing for Turned Back Wing (4’-0” Deep End Bent Caps)
7-14 Suggested Method of Detailing Sloped Wings
7-15 Required Length of Wings
7-15a Required Length of Wings (4 Foot Deep End Bent Caps)
LIST OF FIGURES

7-16 General Guide for Piles in End Bent Wings
7-16a General Guide for Piles in End Bent Wings (4’-0” Deep End Bent Caps)
7-17 Blockout in Wing Wall
7-18 Blockout in Wing Wall for Cored Slab
7-19 Wing Design Table (4’-0” Deep End Bent Caps)
7-20 Intentionally Left Blank
7-21 Intentionally Left Blank
7-22 Intentionally Left Blank
7-23 Standard Brace Pile Detail (for End Bents)
7-23a Standard Brace Pile Detail (4’-0” Deep End Bent Caps)
7-24 Standard Brace Pile Detail (for End Bents with Double Row of Piles)
7-24a Standard Brace Pile Detail (4’-0” Deep End Bent Caps with Double Row of Piles)
7-25 Pipe Pile in End Bent or Footing Detail
7-26 Standard Brace Pile Detail (for Interior Bents)
7-27 Standard Brace Pile Detail (for Interior Bents with Double Row of Piles)
7-28 End of Cap Detail for Interior Pile Bents
7-29 Column Connection Details for Seismic Performance Zone 2
7-30 Spiral Reinforcing for Round Columns
7-31 Pipe Splice Details
7-32 Pile Tip Details
7-33 Composite Pile Details
7-34 Pier Scour Protection (Spread Footings Located in Stream Bed)
7-35 Pier Scour Protection (Spread Footings Located in Banks of Streams)
7-36 Pier Scour Protection (Pile Footings Located in Stream Bed)
7-37 Details for Foundation Piles in Bents
7-38 Pay Area of Excavation for Post and Beam End Bents
7-40 Pier Crash Wall for Railroad Overheads
7-41 Median Barrier Rail and Column Connection

8 REHABILITATION

8-1 Tie Rod Assembly with Turnbuckle or Sleeve Nut
8-2 Rolled Beam Details (with Cover Plate)

9 REINFORCED CONCRETE BOX CULVERTS

9-1 Culvert Design Worksheet
9-2 Sloped and Tapered Inlet (Example)
9-3 Sloped and Tapered Inlet (Example)
9-4 Cast-in-Place Culvert Example (Location Sketch and Profile)
9-5 Cast-in-Place Culvert Example (Section, End Elevation, and Slab Plans)
9-6 Cast-in-Place Culvert Example (Wing Details)
9-7 Edge Beams for Culvert Extensions
9-8 Precast Culvert Example (Slab Plans, Section, and End Elevation)
9-9 Precast Culvert Example (Details)
List of Figures

9-10 Precast Culvert Example (Wing Details)
9-11 Skewed Precast Box Culverts
9-12 Turned Back Wing Layout Formulas for Culverts
9-13 Layout for Turned Back Culvert Wings
9-14 Outlet Wing Section Normal to Roadway
9-15 Plan of Outlet Wings
9-16 Outlet Wing Rip Rap Details
9-17 Details for Computing Culvert Excavation
9-18 Culvert Sill Details
9-19 Guardrail Anchor Assembly Details (Example)
9-20 Guardrail Anchor Assembly Details for Precast Culvert (Example)

10 Reinforcing Steel
10-1 Areas, Weights, and Spacing of Bars
10-2 Areas of Standard Bars
10-3 Development Length and Splice Length for Bars in Tension (Classes A and B)
10-4 Development Length and Splice Length for Bars in Tension (Class C)
10-5 Development Length and Splice Length for Bars in Compression
10-6 Splice Length Chart for Superstructures
10-7 General Guide to Substructure Bar Splice and Development Lengths (Interior Bent)
10-8 General Guide to Substructure Bar Splice Lengths (End Bent)
10-9 Bill of Material and Spiral Length Calculation (Example)
10-10 Detail of Reinforcing in Bent Cap
10-11 Standard Bar Details
10-12 Sample Bar Replacement Chart

11 Bridge Layout
11-1 Stream Crossing Details for 1’-0” (300 mm) Minimum Berm (Cored Slab Structure)
11-1a Stream Crossing Details for 1’-0” (300 mm) Minimum Berm (Cored Slab Structure 4’-0” Deep End Bent Caps)
11-2 Stream Crossing Details for 1’-0” (300 mm) Minimum Berm
11-2a Stream Crossing Details for 1’-0” (300 mm) Minimum Berm (4’-0” Deep End Bent Caps)
11-3 Stream Crossing Details for 1’-0” (300 mm) Minimum Berm (Dimensions)
11-3a Stream Crossing Details for 1’-0” (300 mm) Minimum Berm (4’-0” Deep End Bent Caps 1 ½:1 Slope) (Dimensions)
11-3b Stream Crossing Details for 1’-0” (300 mm) Minimum Berm (4’-0” Deep End Bent Caps 2:1 Slope) (Dimensions)
11-4 Berm Details
11-5 Bridge Length Requirements – Railroad Overheads

12 Miscellaneous Items
12-1 Approach Slab Standard Drawing
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-2</td>
<td>Approach Slab Details Standard Drawing</td>
</tr>
<tr>
<td>12-3</td>
<td>Guardrail Anchorage for Barrier Rail (Example)</td>
</tr>
<tr>
<td>12-4</td>
<td>Approach Slab Standard Drawing</td>
</tr>
<tr>
<td>12-5</td>
<td>Approach Slab Standard Drawing</td>
</tr>
<tr>
<td>12-6</td>
<td>Approach Slab Details Standard Drawing</td>
</tr>
<tr>
<td>12-7</td>
<td>Barrier Rail Transition Details</td>
</tr>
<tr>
<td>12-8</td>
<td>Plan View of Foam Joint Seal at End Bent for Barrier Rail</td>
</tr>
<tr>
<td>12-9</td>
<td>Plan View of Foam Joint Seal at End Bent for Curbs</td>
</tr>
<tr>
<td>12-10</td>
<td>Foam Joint Seal Details at End Bent for Barrier Rail</td>
</tr>
<tr>
<td>12-11</td>
<td>Foam Joint Seal Details at End Bent for Curbs</td>
</tr>
<tr>
<td>12-12</td>
<td>Plan View of Armored Foam Joint Seal at End Bent for Barrier Rail</td>
</tr>
<tr>
<td>12-13</td>
<td>Plan View of Armored Foam Joint Seal at End Bent for Curbs</td>
</tr>
<tr>
<td>12-14</td>
<td>Armored Foam Joint Seal Details at End Bent for Barrier Rail</td>
</tr>
<tr>
<td>12-15</td>
<td>Armored Foam Joint Seal Details at End Bent for Curbs</td>
</tr>
<tr>
<td>12-16</td>
<td>Plan View of Foam Joint Seal at End Bent for Sidewalk</td>
</tr>
<tr>
<td>12-17</td>
<td>Details of Sidewalk on Approach Slab</td>
</tr>
<tr>
<td>12-18</td>
<td>Approach Slab Length Flow Chart</td>
</tr>
<tr>
<td>12-19</td>
<td>Intentionally Left Blank</td>
</tr>
<tr>
<td>12-20</td>
<td>Intentionally Left Blank</td>
</tr>
<tr>
<td>12-21</td>
<td>Uses and Field Testing of Adhesive Bonding Systems</td>
</tr>
<tr>
<td>12-22</td>
<td>Riprap</td>
</tr>
<tr>
<td>12-22a</td>
<td>Riprap (4’-0” Deep End Bent Caps)</td>
</tr>
<tr>
<td>12-23</td>
<td>Concrete Slope Protection</td>
</tr>
<tr>
<td>12-23a</td>
<td>Concrete Slope Protection (4’-0” Deep End Bent Caps)</td>
</tr>
<tr>
<td>12-24</td>
<td>Detail of Slope Protection Behind Crashwall</td>
</tr>
<tr>
<td>12-25</td>
<td>Slope Protection Details Sheet</td>
</tr>
<tr>
<td>12-25a</td>
<td>Slope Pivot Point Location</td>
</tr>
<tr>
<td>12-26</td>
<td>Bridge Access Facilities Table</td>
</tr>
<tr>
<td>12-27</td>
<td>Railroad Shoring Requirements</td>
</tr>
<tr>
<td>12-28</td>
<td>Grouted Recess at Location of Shoring Strut Through Railroad Crashwall</td>
</tr>
<tr>
<td>12-29</td>
<td>Corrosive Area Map</td>
</tr>
<tr>
<td>12-30</td>
<td>Determination of Corrosion Protection</td>
</tr>
<tr>
<td>12-31</td>
<td>Structure Excavation Limits (Reinforced Earth Wall)</td>
</tr>
<tr>
<td>12-32</td>
<td>Structure Excavation Limits (Permanent Tiedback Wall)</td>
</tr>
<tr>
<td>12-33</td>
<td>Structure Drainage System Details (Elevation, Bent Details)</td>
</tr>
<tr>
<td>12-34</td>
<td>Structure Drainage System Details (Part-Elevation at Bent, Insert Location in Stay-In-Place Forms)</td>
</tr>
<tr>
<td>12-35</td>
<td>Structure Drainage System Details (Part-Elevation at Scupper, Part-Section of Pipe Hanger)</td>
</tr>
<tr>
<td>12-36</td>
<td>Exposure Categories for Sound Barrier Wall</td>
</tr>
<tr>
<td>12-37</td>
<td>Pile Panel Sound Barrier Wall Design</td>
</tr>
</tbody>
</table>