Second Bridge to Oak Island

R-2245 Brunswick Co.

Tentative Letting May 2007 ????

- Bridge Layout
- Girder Design
- Lessons Learned from Virginia Dare Bridge (Manteo Bypass)

Bridge Layout

Span Arrangement

- Span A (125' simple span)
- Span B through D (225'-280'-225' continuous)
- Span E (125' simple span)

Channel Clearance

- Navigational Channel not centered about main span
- Haunched Girder controlled vertical clearance

Typical Section

Concrete Deck

- 8 1/2" thickness (lightweight concrete)
- Removable forms for channel spans
- 3" clear cover
 - additional corrosion protectionfacilitate grinding of the deck
- Epoxy coated reinforcing steel and supports
- Concrete contains calcium nitrite and fly ash

Intermediate Diaphragm

- Metallized for corrosion protection
- Used on 78" Bulb Tee and Modified 78" Bulb Tee

Intermediate Diaphragm

- Metallized for corrosion protection
- Used on Haunched Girders

Girder Design

- Load Factor Design
- Time-Dependent Staged Construction software
 - IDS BD2 (Presto)
 - Tango
 - Consplice[®]
 - Others
- Software selected
 - Consplice[®] by LEAP Software, Inc.

Girder Section

- Girder form spacing increased to accommodate post-tension ducts
- Concrete Strength
 Initial 5500 psi
 Final 9000 psi
- Haunched Segment depth
 6'-6" to 13'-0"
- Contain Calcium Nitrite

Modified 78" Bulb Tee

Spliced Girder Segments

• One continuous girder line consists of 5 segments

– 2 End Segments	<i>163'-6"</i>	108 tons
– 2 Haunched Segments	118'-0"	105 tons
– 1 Drop-in Segment	158'-0"	104 tons

Construction Stages for Computer Model

Staging Detail		Girder Age in Days	
		Slow Paced	Fast Paced
1	Cut strands	2	1
2	Erect Haunched Girders	365	60
3	Erect End Segments	365	60
4	Erect Drop-in Beams	375	70
5	Cast closure splices	385	80
6	Post Tension (Stage 1)	400	94
7	Cast Deck Slab	460	124
8	Post Tension (Stage 2)	480	131
9	Cast Rail	490	133
10	Bridge Open to Traffic	550	163
11	Future Wearing Surface	4,163	4,163
12	Half Life	13,780	13,780
13	End of Service	27,560	27,560

75+ year design life

Erection Sequence (Stage 1)

- Construct temporary & permanent bents
- Erect and secure Haunched Girders

Erection Sequence (*Stage 2*)

- Erect End Segments
- Secure End Segments using strongbacks

Erection Sequence (Stage 3)

- Cast bent diaphragms and place intermediate diaphragms
- Erect Drop-in beams
- Secure Drop-in beams using strongbacks

Erection Sequence (Stage 4)

- Place remaining intermediate diaphragms
- Cast closure splice diaphragms

Erection Sequence (Stage 5)

- Complete first stage post-tensioning
- Contractor can now erect girders in spans A and E
- Cast spans B through D deck

Erection Sequence (Stage 6)

- Complete second stage post-tensioning
- Cast remaining portions of spans B through D deck
- Cast parapet and median

Prestressing Steel

• End Segment

– 46 strands, 12 debonded

<u>Haunched Segment</u>
– 38 strands, 6 debonded

• Drop-in Segment

– 46 strands, 4 debonded

Build Ups & Deflections

- Girder segments are erected as "short chords" to reduce build ups (Min. build up of 2.5")
 - End Segment build up
 - Haunched Segment build up
 - Drop-in Segment build up

6.75" 5.25" 7.25"

- More prestressing reduces build up

 Watch out for overstressing when PT force applied
- Temporary tower and bent elevations adjusted – Uplift due to post-tensioning
 - Haunched girder deflection from drop-in girder

Post-Tensioning Tendons

- PT tendons run full length of spans B-D girders
- Three tendons for each girder line
- Tendons contain fifteen 0.6" diameter strands
- Tendons are anchored in End Blocks and stressed from both ends
- Intermediate diaphragms are released before first stage of post-tensioning begins

Tendon Profile

- PT ducts have an 8" minimum spacing
- Tendons 1 and 2 stressed before casting the deck
- Tendon 3 stressed after casting the deck
- Tendon 3 height increased to reduce stressed in concrete

Tendon Diameter vs. Clear Cover

- Area of Duct =10.35 in²
 3.63" inside diameter
- Area of Tendon = 3.26 in^2
- Area of Tendon increased by factor of 2.5 = 8.15 in²

• Larger duct would reduce 2" clearance

End Block Section

- Investigated multiple posttensioning supplier requirements for equipment.
- Selected a system supplier
- Sized and located recesses based on that suppliers needs.

End Block Elevation View

Corrosion Protection

- PT ducts are sealed until tendon placement
- Ducts are cleaned using air
- Water soluble oil is not allowed as a lubricant for tendon placement
- Anchorages in end block are protected
 - Recesses are backfilled with non-shrink grout
 - Grout filled recesses are sealed
 - End of girder is encased with concrete diaphragm

Lessons Learned

- Placed a diaphragm at the closure splices
- Used approved pre-packaged grout
- Did not use epoxy coated rebar in girders
- Placed post-tensioning tendons in the web

 Reduces potential corrosion problems
 Reduces end block size for PT anchorage