LRFD, The USA's Innovative Bridge Design Specifications

Firas I. Sheikh Ibrahim, Ph.D., P.E.

Senior Codes & Specifications Engineer

Office of Bridge Technology Federal Highway Administration Washington, DC

Who We Are, at FHWA

A USDOT Agency responsible for ensuring that America's roads and highways continue to be the safest and most technologically up-to-date.

We provide financial (> \$30 Billion/year) and technical support to States and Local Governments

Effect of Federal Aid on Transportation Structures

% Deficient

Federal Aid has been increasing significantly (\$14,257,907,017 in ISTEA To \$23,365,688,795 in TEA21), but deficiencies remain significant

All Structures - Percent Deficiencies

FHWA's Top Priorities

Make transportation safer, more reliable and secure,

✓ Reduce traffic congestion, and

✓ Minimize impact on the environment

Accomplishment of Top Priorities

1-Develop and Deploy Reliable and Safer Specifications, and increase the Design [and Service Life

✓ Reduce
 congestion

Minimize
 impact on the
 environment

Evolution Of Design Specifications

1931 - First AASHO Specs

Evolved into AASHTO Standard Specs (SLD, and LFD), and became a patch document with inconsistencies and gaps

1994 - Load and Resistance Factor Design (LRFD)

1998 - 2nd Edition of LRFD

2004 - 3rd Edition of LRFD

AASHTO OC LRFD Survey

April 2004

LFD Design Equation

 $\sum \gamma_i Q_i \le \phi R_n$

where:

- $\gamma_i = Load factor$ $\gamma_i Q_i = Factored load,$
 - required capacity
- ϕ = Resistance factor
- $\phi R_n = Capacity$

Load Factor Design (LFD):

 $1.3[1.0(f_t)_D + 5/3(f_t)_L] \le \phi F_y, \text{ or }$ $1.3(f_t)_D + 2.17(f_t)_L \le \phi F_y \quad (\phi \text{ by judgment})$

Design & Service Life for The Standard Specifications

Design Life is 50 years

Service Life could be less than 50

Innovative LRFD Design Specifications

✓ Longer Design Life (75 years)

 ✓ Allows use of High Performance Material; Service Life (>75 years)

 ✓ Consistent Reliability and Safety Factors for all bridges,

✓ More Realistic Live Load Model, and Distribution Factors

✓ State of the Art Provisions and Design Procedures

Basic LRFD Design Equation

 $\Sigma \eta_i \gamma_i Q_i \leq \phi R_n = R_r$

where:

- $\eta_i = \eta_D \eta_R \eta_I$
- $\eta_i = Load modifier$
- γ_i = Load factor
- $Q_i =$ Nominal force effect
- ϕ = Resistance factor
- *R_n*= *Nominal resistance*
- $R_r = Factored resistance = \phi R_n$

Sample LRFD Design Equation:

 $1.25(f_t)_D + 1.75(f_t)_L \le \phi F_y$ (ϕ by calibration)

(new live-load model)

LRFD = More Accurate Live Load Model, HL-93

• Design Truck: \Rightarrow

25.0 KIP 25.0 KIP

4'-0'

Oľ

 Design Tandem: Pair of 25.0 KIP axles spaced 4.0 FT apart

superimposed on

Design Lane Load 0.64 KLF uniformly distributed load

6-0"

LRFD = More Accurate Live-Load Distribution Factors

SUPPORTING COMPONENTS	TYPE OF DECK	TYPICAL CROSS-SECTION
Steel Beam	Cast-in-place concrete slab, precast concrete slab, steel grid, glued/spiked panels, stressed wood	
Closed Steel or Precast Concrete Boxes	Cast-in-place concrete slab	(b)
Open Steel or Precast Concrete Boxes	Cast-in-place concrete slab, precast concrete deck slab	(c)
Cast-in-Place Concrete Multicell Box	Monolithic concrete	(d)
Cast-in-Place Concrete Tee Beam	Monolithic concrete	(e)
Precast Solid, Voided or Cellular Concrete Boxes with Shear Keys	Cast-in-place concrete overlay	(f)
Precast Solid, Voided, or Cellular Concrete Box with Shear Keys and with or without Transverse Posttensioning	Integral concrete	(g)

Sample Live-Load Distribution Factors (Moments – Interior Beams)

 Table 4.6.2.2.2b-1 Distribution of Live Loads Per Lane for Moment in Interior Beams.

	Applicable		
	Cross-Section		
	from Table		Range of
Type of Beams	4.6.2.2.1-1	Distribution Factors	Applicability
Concrete Deck, Filled	(a,), k and also	One Design Lane Loaded:	$3.5 \le S \le 16.0$
Grid, Partially Filled	i, j	$(S)^{0.4}(S)^{0.3}(K)^{0.1}$	$20 \le L \le 240$
Grid, or Unfilled Grid	if sufficiently	$0.06 + \left \frac{5}{14} \right \left \frac{5}{1200} \right \left \frac{12}{1200} \right ^3$	$4.5 \le t \le 12.0$
Deck Composite with	connected to	(14) (L) $(12.0Lt_s)$	$4.3 \le l_s \le 12.0$
Reinforced Concrete Slab	act as a unit	Two or More Design Lanes Loaded:	$N_b \ge 4$
on Steel or Concrete		$(\mathbf{S})^{0.6} (\mathbf{S})^{0.2} (\mathbf{K})^{0.1}$	$10,000 \le K_g \le$
Beams; Concrete T-		$0.075 + \left \frac{5}{2.5} \right \left \frac{5}{3.5} \right \left \frac{1}{3.5} \right \left \frac{1}{12.5} \right \frac{1}{3.5} \right $	7,000,000 °
Beams, T- and Double T-		(9.5) (L) $(12.0 Lt_s^3)$	
Sections		use lesser of the values obtained from the	$N_b = 3$
		equation above with $N_b = 3$ or the lever rule	

Notes: 1) Units are in LANES and not WHEELS

2) No multiple presence factor applied (tabulated equations)

Reliability and Calibration of Standard & LRFD Specifications

U.S. Department of Transportation Federal Highway Administration States' Experience with the AASHTO LRFD Design Specifications

(>2,240 LRFD Bridges – 2004)

Doremus Avenue Viaduct (Newark, NJ)

Rt. 9, Nacote Creek Bridge (South Jersey)

Barclay Creek Bridge Site

Environmentally sensitive area 170 foot span required for hydraulic requirements

✓ HPS 70W
 LRFD Bridge
 ✓ 174 foot span length

✓ Overall, a
 good
 experience

Washington State Department of Transportation

WSDOT Spliced I-Girders Twisp River Bridge, Twisp, WA

Single-span spliced concrete girders spanning 195 ft

Washington State Department of Transportatio

FLDOT St. George Island Bridge Apalachicola, FL

 21,542' long bridge
 Post-tensioned bulb-tee girders

FLDOT Hathaway Bridge , Panama City, FL

- ✓ 3,815' long
- ✓ 330' typical span
 Segmental boxes

Long Span Bridges in LRFD? (Great River Bridge, Desha County, AR)

682 ft - 1,520 ft - 682 ft Cable-Stay Bridge

Long Span Bridges in LRFD? (Hoover Dam Bypass Project)

Composite Concrete Deck Arch Bridge (~2,000 ft)

Some State DOT's Conclusion

✓ New Jersey: ".. major step forward ..."

- ".. cost savings of up to 8 percent ..."
- ✓ Washington:
- "... good experience ... was not so difficult.."
- ".. comprehensive powerful .."

✓ Florida:

- ".. good experience ... was not so difficult.."
- ".. comprehensive powerful .."

Washington State Department of Transportation

 ✓ Comprehensive, rational, and powerful specs
 ✓ Result in safer and more reliable transportation structures
 ✓ Design Life is 75 years

THANK YOU

FREE Assistance Firas I. Sheikh Ibrahim, Ph.D., P.E. Senior Codes & Specifications Engineer Office of Bridge Technology Federal Highway Administration HIBT-10, Room 3203 400 7th. St. SW Washington, DC 20590 (202) 366-4598 Firas.lbrahim@fhwa.dot.gov

LRFD Loads and **Loads Distribution** Firas I. Sheikh Ibrahim, Ph.D., P.E. **Federal Highway Administration** Washington, DC

Basic LRFD Design Equation

- $\Sigma \eta_i \gamma_i \mathbf{Q}_i \le \phi \mathbf{R}_n = \mathbf{R}_r$ Eq. (1.3.2.1-1)
- where:
- $\eta_i = \eta_D \eta_R \eta_I$
- γ_i = Load factor
- ϕ = Resistance factor
- **Q**_i = Nominal force effect
- **R**_n = **Nominal resistance**
- $R_r = Factored resistance = \phi R_n$

Load Combinations and Load Factors

Load Combination	DC DD	LL IM	WA	WS	WL	FR	TU TG CR	SE	Use One of These at a Time				
Limit State	DW EH EV ES	CE BR PL LS					SH			EQ	IC	СТ	CV
STRENGTH-I	γ _p	1.75	1.00	-	-	1.00	0.50/1.20	γtg	γse	-	-	-	-
STRENGTH-II	γρ	1.35	1.00	-	-	1.00	0.50/1.20	γtg	γse	-	-	-	-
STRENGTH-III	γρ	-	1.00	1.40	-	1.00	0.50/1.20	γtg	γse	-	-	-	-
STRENGTH-IV EH, EV, ES, DW DC ONLY	γ _p 1.5	-	1.00	-	-	1.00	0.50/1.20	-	-	-	-	-	-
STRENGTH-V	γρ	1.35	1.00	0.40	1.00	1.00	0.50/1.20	γtg	γse	-	-	-	
EXTREME-I	γp	γeq	1.00	-	-	1.00	-	-	-	1.00	-	-	
EXTREME-II	γρ	0.50	1.00	-	-	1.00	-	-	-	-	1.00	1.00	1.00
SERVICE-I	1.00	1.00	1.00	0.30	0.30	1.00	1.00/1.20	γtg	γse	-	-	-	
SERVICE-II	1.00	1.30	1.00	-	-	1.00	1.00/1.20	-	-	-	-	-	-
SERVICE-III	1.00	0.80	1.00	-	-	1.00	1.00/1.20	γтg	γse	-	-	-	-
FATIGUE-LL, IM & CE ONLY	-	0.75	-	-	-	-	-	-	-	-	-	-	_

Load Factors for Permanent Loads, γ _p							
	Load Factor						
Type of Load	Maximum	Minimum					
DC: Component and Attachments	1.25	0.90					
DD: Downdrag	1.80	0.45					
DW: Wearing Surfaces and Utilities	1.50	0.65					
EH: Horizontal Earth Pressure Active At Post	1.50	0.90					
 EV: Vertical Earth Pressure Overall Stability Retaining Structure Rigid Buried Structure Rigid Frames 	1.35 1.35 1.30 1.35 1.35 1.95	N/A 1.00 0.90 0.90 0.90					

LRFD Negative Moment Loading (Article 3.6.1.3.1)

For negative moment (between points of permanent-load contraflexure) & interior-pier reactions, check an additional load case:

LRFD Fatigue Load (Article 3.6.1.4.1)

Section 4 Structural Analysis and Evaluation

- 4.6 Static Analysis
- 4.6.2 Approximate Methods of Analysis
- 4.6.2.2 Beam-Slab Bridges

Live-Load Lateral Distribution Factors

TABLE 4.6.2.2.1-1 COMMON DECK SUPERSTRUCTURES COVERED IN ARTICLES 4.6.2.2.2 AND 4.6.2.2.3.

Live-Load Distribution Factors Moments – Interior Beams

Table 4.6.2.2.2b-1 Distribution of Live Loads Per Lane for Moment in Interior Beams.

	Applicable Cross Section		
	from Table		Range of
I ype of Beams	4.6.2.2.1-1	Distribution Factors	Applicability
Concrete Deck, Filled	$(a, \mathbf{r}), \mathbf{k} \text{ and also}$	One Design Lane Loaded:	$3.5 \le S \le 16.0$
Grid, Partially Filled	i, j	$(S)^{0.4}(S)^{0.3}(K_{c})^{0.1}$	$20 \le L \le 240$
Grid, or Unfilled Grid	if sufficiently	$0.06 + \left(\frac{3}{14}\right) \left(\frac{3}{L}\right) \left(\frac{3}{12.0Lt_{*}^{3}}\right)$	$4.5 \le t_s \le 12.0$
Reinforced Concrete Slab	act as a unit	Two or More Design Lanes Loaded:	$N_b \ge 4$
on Stee) or Concrete Beams; Concrete T- Beams, T- and Double T-		$0.075 + \left(\frac{S}{9.5}\right)^{0.6} \left(\frac{S}{L}\right)^{0.2} \left(\frac{K_g}{12.0 L t_s^3}\right)^{0.1}$	$10,000 \le K_g \le$ 7,000,000
Sections		use lesser of the values obtained from the	$N_b = 3$
		equation above with $N_b = 3$ or the lever rule	

Notes: 1) Units are in LANES and not WHEELS!

2) No multiple presence factor applied (tabulated equations)

3) May be **Different** for Positive and Negative Flexure Locations!

Live-Load Distribution Factors Shear – Interior Beams

Table 4.6.2.2.3a-1 Distribution of Live Load per Lane for Shear in Interior Beams.

	Applicable Cross-Section			
Type of	from Table	One Design Lane	Two or More Design Lanes	Range of
Superstructure	4.6.2.2.1-1	Loaded	Loaded	Applicability
Concrete Deck,	a, e, k and also	S S	$S (S)^{2.0}$	$3.5 \le S \le 16.0$
Filled Grid,	i, j if	$0.36 + \frac{1}{250}$	$0.2 + \frac{3}{12} - \left(\frac{3}{25}\right)$	$20 \le L \le 240$
Partially Filled	sufficiently	20.0	12 (33)	
Grid, or Unfilled	connected to			$4.5 \le t_s \le 12.0$
Grid Deck	act as a unit			$N_b \ge 4$
Composite with				
Reinforced				
Concrete Slab on				
Steel or Concrete				
Beams; Concrete		Lever Rule	Lever Rule	$N_b = 3$
T-Beams, T-and				
Double T-Sections				

Notes: Same for Positive and Negative Flexure Locations!

Live-Load Distribution Factors Moments – Exterior Beams

 Table 4.6.2.2.2d-1 Distribution of Live Loads Per Lane for Moment in Exterior Longitudinal Beams.

Type of Superstructure	Applicable Cross- Section from Table 4.6.2.2.1-1	One Design Lane Loaded	Two or More Design Lanes Loaded	Range of Applicability
Concrete Deck, Filled Grid, Partially Filled Grid, or Unfilled Grid Deck Composite with Reinforced Concrete Slab on Steel or Concrete Beams; Concrete T-Beams, T- and	a, e, k and also i, j if sufficiently connected to act as a unit	Lever Rule	$g = e g_{interior}$ $e = 0.77 + \frac{d_e}{9.1}$	$-1.0 \leq d_e \leq 5.5$
Double T- Sections			use lesser of the values obtained from the equation above with $N_b = 3$ or the lever rule	$N_b = 3$

<u>Notes</u>: distribution factor for the exterior beam shall not be taken to be less than that which would be obtained by assuming that the cross-section deflects and rotates as a rigid cross-section (SPECIAL ANALYSIS).

$$\mathbf{R} = \frac{\mathbf{N}_{L}}{\mathbf{N}_{b}} + \frac{\mathbf{X}_{ext} \sum^{\mathbf{N}_{L}} \mathbf{e}}{\sum^{\mathbf{N}_{b}} \mathbf{x}^{2}}$$

Live-Load Distribution Factors Shear – Exterior Beams

Table 4.6.2.2.3b-1 Distribution of Live Load per Lane for Shear in Exterior Beams.

	Applicable Cross-			
	Section from Table	One Design Lane	Two or More Design	Range of
Type of Superstructure	4.6.2.2.1-1	Loaded	Lanes Loaded	Applicability
Concrete Deck, Filled	ae, k and	Lever Rule	$g = e g_{interior}$	$-1.0 \le d_e \le 5.5$
Grid, Partially Filled	also i, j		d_{e}	
Grid, or Unfilled Grid	if sufficiently connected		$e = 0.6 + \frac{e}{10}$	
Deck Composite with	to act as a unit		10	
Reinforced Concrete Slab			I D I	
on Stee) or Concrete			Lever Kule	$N_b = 3$
Beams: Concrete T-				

<u>Notes</u>: distribution factor for the exterior beam shall not be taken to be less than that which would be obtained by assuming that the cross-section deflects and rotates as a rigid cross-section (SPECIAL ANALYSIS)

$$\mathbf{R} = \frac{\mathbf{N}_{L}}{\mathbf{N}_{b}} + \frac{\mathbf{X}_{ext} \sum^{\mathbf{N}_{L}} \mathbf{e}}{\sum^{\mathbf{N}_{b}} \mathbf{x}^{2}}$$

Live-Load Distribution Factors Exterior Girder – Lever Rule

Live-Load Distribution Factors Exterior Girder - Special Analysis

- R = reaction on exterior beam in terms of lanes
- N_L = number of loaded lanes under consideration
- e = eccentricity of a lane from the center of gravity of the pattern of girders (ft)
- x = horizontal distance from the center of gravity of the pattern of girders to each girder (ft)
- X_{ext} = horizontal distance from the center of gravity of the pattern of girders to the exterior girder (ft)
- N_{b} = number of beams or girders

Unified Straight and Curved Steel Girder Design Specifications

Introduction Unified Steel Specifications

Straight

One Specs!

- ✓ Primary-Strength Flexural & Shear Effects
- ✓ Lateral Flange Effects
 - ✓ Differential Deflection Effects
 - ✓ Torsion Effects
 - ✓ Lateral Force Effects
 - ✓ Second-Order Effects
- ✓ Cross Frame Forces

FLB and LTB

Post Web Buckling Strength

- ✓ Primary Flexural & Shear Effects
- ✓ Lateral Flange Effects
 - ✓ Differential Deflection Effects
 - ✓ Torsion Effects
 - ✓ Lateral Force Effects
 - ✓ Second-Order Effects
- ✓ Cross Frame Forces

- ✓ Primary Flexural & Shear Effects
- ✓ Lateral Flange Effects
 - ✓ Differential Deflection Effects
 - ✓ Torsion Effects
 - ✓ Lateral Force Effects
 - ✓ Second-Order Effects
- ✓ Cross Frame Forces

Differential Load/Deflection Effects

 Outside girder carries more load
 Vertical Deflection is not equal between adjacent girders
 Torsional Effects on

GIRDER

=> <u>Torsional Effects on</u> <u>Girders, Lateral Flange</u> <u>Bending, and Affects fit-</u> <u>up during construction</u>

- ✓ Primary Flexural & Shear Effects
- ✓ Lateral Flange Effects
 - ✓ Differential Deflection Effects
 - ✓ Torsion Effects
 - ✓ Lateral Force Effects
 - ✓ Second-Order Effects
- ✓ Cross Frame Forces

Torsion Effects

Torsion Deformations

✓ Twisting

Torsion Stresses

- ✓ Primary Flexural & Shear Effects
- ✓ Lateral Flange Effects
 - ✓ Differential Deflection Effects
 - ✓ Torsion Effects
 - ✓ Lateral Force Effects
 - ✓ Second-Order Effects
- ✓ Cross Frame Forces

Lateral Force Effects

=> Lateral Force Effects & "One-Third" Rule

 $f_{bu} \leq F_r \qquad \text{ALL L.S., Continuously Braced Flanges, } f_\ell = 0$

 $f_{bu} \leq F_r \qquad \text{ALL L.S., Continuously Braced Flanges, } f_\ell = 0$

$$f_{bu} + \frac{1}{3} f_{\ell} \leq F_{r} \quad \text{Strength Limit State & Constructibility-Compression}$$

$$M_{u} + \frac{1}{3} f_{\ell} S_{x} \leq M_{r} \quad \text{Strength Limit State - Compact Straight}$$

$$f_{bu} + f_{\ell} \leq F_{r} \quad \text{Constructibility Yielding } \frac{1}{3} \Rightarrow 1$$

$$f_{bu} + \frac{1}{2} f_{\ell} \leq F_{r} \quad \text{Service Limit State } \frac{1}{3} \Rightarrow \frac{1}{2}$$

Continuously Braced Flanges

$$f_{bu} \leq F_r$$

ALL L.S., Continuously Braced Flanges, $f_\ell=0$

$$\begin{array}{l} \begin{array}{l} \mbox{Solution}\\ f_{bu} + \frac{1}{3} \ f_{\ell} \leq F_{r} \\ M_{u} + \frac{1}{3} \ f_{\ell} S_{x} \leq M_{r} \end{array} & \mbox{Strength Limit State, Constructibility-Compression}\\ \begin{array}{l} M_{u} + \frac{1}{3} \ f_{\ell} S_{x} \leq M_{r} \\ f_{bu} + f_{\ell} \leq F_{r} \\ \end{array} & \mbox{Constructibility Yielding } \frac{1}{3} \Rightarrow 1\\ \begin{array}{l} f_{bu} + \frac{1}{2} \ f_{\ell} \leq F_{r} \\ \end{array} & \mbox{Service Limit State } \frac{1}{3} \Rightarrow \frac{1}{2} \end{array} \end{array}$$

Continuously Braced Flanges

$$f_{bu} \leq F$$

ALL L.S., Continuously Braced Flanges, $f_\ell=0$

- ✓ Primary Flexural & Shear Effects
- ✓ Lateral Flange Effects
 - ✓ Differential Deflection Effects
 - ✓ Torsion Effects
 - ✓ Lateral Force Effects
 - ✓ Second-Order Effects
- ✓ Cross Frame Forces (Primary Members)

Second-Order Effects (Art. 6.10.1.6)

• If
$$L_b > 1.2L_p \sqrt{\frac{C_b R_b}{f_{bu}/F_{yc}}}$$

Second-order compression-flange lateral bending stresses may be approximated by amplifying first-order value:

$$f_{\ell} = \left(\frac{0.85}{1 - \frac{f_{bu}}{F_{cr}}}\right) f_{\ell 1} \ge f_{\ell 1}$$

$$F_{cr} = \frac{C_b R_b \pi^2 E}{\left(\frac{L_b}{r_t}\right)^2}$$

- ✓ Primary Flexural & Shear Effects
- ✓ Lateral Flange Effects
 - ✓ Differential Deflection Effects
 - ✓ Torsion Effects
 - ✓ Lateral Force Effects
 - ✓ Second-Order Effects

Cross Frame Forces (Primary Members)

SUMMARY Unified Steel Specifications

Shear Design

Based on Sectional Model/Modified Compression Field Theory

Traditional Shear Design Method

1 - Before Cracking

2 - After Cracking

Modified Compression Theory Diagonal Compression, Tension in Cracked Concrete Variable Angle Truss Analogy

Modified compression field theory $f_1 \neq 0$

5.8.3.3 Nominal Shear Resistance

$$V_n = V_c + V_s + V_p$$
 (5.8.3.3-1)

$$V_n = 0.25 f_c' b_v d_v + V_p$$
 (5.8.3.3-2)

where:

$$V_c = 0.0316 \beta \sqrt{f'_c} b_v d_v$$
 (5.8.3.3-3)

$$\boldsymbol{\beta} = \frac{f_1 \cot \theta}{\sqrt{f_c'}} \le limit$$

$$V_{s} = \frac{A_{v}f_{y}d_{v} (\cot \theta + \cot \alpha) \sin \alpha}{s}$$
 (5.8.3.3-4)

Factors for Determining β and θ (v_u and ε_x)

 $b_v = effective web width$

 d_v = effective shear depth; distance between the resultants of the tensile and compressive forces due to flexure \geq the greater of 0.9 de or 0.72h

 ϕ = resistance factor for shear specified in Article 5.5.4.2

where:

 A_s , A_{ps} = area of non-prestressed, and prestressing steel on the flexural tension side of the member

5.8.3.4 Determination of β and θ

Table 5.8.3.4.2-1

Values of θ and β for Sections with Transverse Reinforcement

	$\varepsilon_x \times 1,000$								
J_c^+	<u>≤</u> - 0.20	<u>≤</u> - 0.10	<u><</u> - 0.05	≤ 0	<u>~</u> 0.125	≤0.25	<u>≤</u> 0.50	<u>≤</u> 0.75	<u>≤</u> 1.00
<u>≤</u> 0.075	22.3	20.4	21.0	21.8	24.3	26.6	30.5	33.7	36.4
	6.32	4.75	4.10	3.75	3.24	2.94	2.59	2.38	2.23
<u>≤</u> 0.100	18.1	20.4	21.4	22.5	24.9	27.1	30.8	34.0	36.7
	3.79	3.38	3.24	3.14	2.91	2.75	2.50	2.32	2.18
<u>≤</u> 0.125	19.9	21.9	22.8	23.7	25.9	27.9	31.4	34.4	37.0
	3.18	2.99	2.94	2.87	2.74	2.62	2.42	2.26	2.13
<u>≤</u> 0.150	21.6	23.3	24.2	25.0	26.9	28.8	32.1	34.9	37.3
	2.88	2.79	2.78	2.72	2.60	2.52	2.36	2.21	2.08
≤0.175	23.2	24.7	25.5	26.2	28.0	29.7	32.7	35.2	36.8
	2.73	2.66	2.65	2.60	2.52	2.44	2.28	2.14	1.96
≤0.200	24.7	26.1	26.7	27.4	29.0	30.6	32.8	34.5	36.1
	2.63	2.59	2.52	2.51	2.43	2.37	2.14	1.94	1.79
≤0.225	26.1	27.3	27.9	28.5	30.0	30.8	32.3	34.0	35.7
	2.53	2.45	2.42	2.40	2.34	2.14	1.86	1.73	1.64
<u><</u> 0.250	27.5	28.6	29.1	29.7	30.6	31.3	32.8	34.3	35.8
	2.39	2.39	2.33	2.33	2.12	1.93	1.70	1.58	1.50

Additional Longitudinal Reinforcement to Resist Shear

Figure C5.8.3.5-2 Force Variation in Longitudinal Reinforcement Near Maximum Moment Locations.

Figure C5.8.3.4.2-5 Flow Chart for Shear Design of Section Containing at Least Minimum Transverse Reinforcement.

THANK YOU!

Strut-and-Tie Model

5.8 SHEAR AND TORSION 5.8.1 Design Procedures

5.8.1.2 Regions Near Discontinuities

Where the plane sections assumption of <u>flexural theory is</u> <u>not valid</u>, regions of members <u>shall be</u> designed for shear and torsion using the <u>strut-and-tie model</u> as specified in Article 5.6.3. The provisions of Article 5.13.2 shall apply.

D & **B** - Regions

D = Disturbed Discontinuity Deep Beam

B = Bending Beam Bernoulli

Basic Concepts

•Visualize flow of stresses and sketch a strut-tie model to transfer load to the supports, where:

•Compressive forces are resisted by concrete "struts"

- •Tensile forces are resisted by steel "ties"
- •Struts and ties meet at "nodes"

•For best serviceability, the model should follow the elastic flow of forces

Examples of Good and Poor Strut-and-Tie Models

- 1. Shortest & stiffest path to supports
- 2. Minimum release of energy (min cracks)

STM Procedures

- 1. Visualize flow of stresses
- 2. Sketch an idealized strutand-tie model
- 3. Select area of ties
- 4. Check nodal zone stresses
- 5. Check strength of struts
- 6. Provide adequate anchorage for ties
- 7. Provide crack control reinforcement

Figure C5.6.3.2-1 Strut-and-Tie Model for a Deep Beam

Strength Limit State for STM

$$P_r = \phi P_n$$
 (5.6.3.2-1)

where:

- *P_r* = *Factored resistance of strut or tie*
- *P_n* = Nominal resistance of strut or tie
- ϕ = Resistance factor for tension or compression (5.5.4.2) For compression in strut-and-tie models....0.70 For compression in anchorage zones: normal weight concrete......0.80 lightweight concrete.....0.65 For tension in steel in anchorage zones.....1.00 For tension of reinforced concrete.....0.90 For tension of prestressed concrete......1.00

5.6.3.3 Proportioning of Compressive Struts

5.6.3.3.1 Strength of Unreinforced Strut

$$P_n = f_{cu} A_{cs}$$
 (5.6.3.3.1-1)

5.6.3.3.4 Reinforced Strut $P_n = f_{cu}A_{cs} + f_yA_{ss}$ (5.6.3.3.4-1)

where:

- $f_{cu} = limiting compressive stress as specified in Article 5.6.3.3.3$
- A_{cs} = effective cross-sectional area of strut as specified in Article 5.6.3.3.2
- A_{ss} = area of reinforcement in the strut

Factors Affecting Size of Strut

Width of the strut is affected by:

- Location and distribution of reinforcement (tie) and its anchorage
- Size and location of bearing

Figure 5.6.3.3.2-1

Influence of Anchorage Conditions on Effective Cross-Sectional Area of Strut

a) Strut anchored by reinforcement

b) Strut anchored by bearing and reinforcement c) Strut anchored by bearing and strut

5.6.3.3.3 Limiting Compressive Stress in Strut

$$f_{cu} = \frac{f_c'}{0.8 + 170\varepsilon_1} \le 0.85 f_c' \text{ (5.6.3.3.3-1)}$$

$$\epsilon_{I} = \epsilon_{s} + (\epsilon_{s} + 0.002) \cot^{2} \alpha_{s}$$
 (5.6.3.3.3-2)
where:

- f'_{c} = specified compressive strength
- $\varepsilon_{\rm s}$ = the tensile strain in the concrete in the direction of the tension tie
- α_s = the smallest angle between the compressive strut and adjoining tension ties (*)

5.6.3.4.1 Strength of Tie

$$P_n = f_y A_{st} + A_{ps} \left[f_{pe} + f_y \right]$$
 (5.6.3.4.1-1)

where

- *f_y* = yield strength of mild steel longitudinal reinforcement
- A_{st} = total area of longitudinal mild steel reinforcement in the tie
- A_{ps} = area of prestressing steel
- *f*_{pe} = stress in prestressing steel due to prestress after losses

5.6.3.5 Proportioning of Node Regions

The concrete compressive stress in the node regions of the strut shall not exceed:

- For node regions anchoring tension ties in more than one direction:....0.65 \overline f'_c

Figure C5.6.3.2-1 Strut-and-Tie Model for a Deep Beam

5.6.3.6 Crack Control Reinforcement

- Provide orthogonal grid of reinforcement near each face of D-Region
- Maximum Bar Spacing = 12 in.
- Ratio A_s / A_g ≥ 0.003 in each of the orthogonal directions
- Crack control reinforcement, located within tie, maybe considered as part of tie

Questions?