Emergency Sinkhole Mitigation & Void Investigation of Abandoned Railroad Tunnel along US HWY 24 Tennessee Pass, CO – Case Study

Kanaan Hanna, Steve Hodges, John Nolte, ZAPATA
Joseph Elsen, Rex Goodrich, Matthew Figgs, David Thomas, CDOT
Tom Szynakiewicz, Hayward Baker
Mark Vessely, Shannon and Wilson
Focus

- Critical Project Issues
- Sinkhole Development Mechanism
 - Probability of sinkhole
- Preliminary CDOT Borings
- Hayward Baker Grouting
 - Flow-fill grouting
 - Low mobility grouting or compaction grouting (LMG)
- ZAPATA Tunnel Void Investigation
 - 2D/3D Laser tunnel void scanning
 - Video imaging
- Tunnel Mitigation Strategy
- Summary

ZAPATA Services
Project Site Location – Critical Issues

Critical Project Issues

- Safely opening the road as quick as possible.
- Prime tourist season in mountains, accommodating bike rides / races.
- Permanent mitigation of collapse and settlement hazard within CDOT easement.
- Excessive grout loss.
- Avoid damage to the existing tunnel.
- Project delivery ~ Less < 25 days to complete, bonus to re-open at least one lane earlier than 20 days from start date.
Sinkhole Development

- Sinkhole above an old railroad tunnel (built in 1880)
- Sinkhole developed on July 9, 2012 on the southbound shoulder
- Approximately: 35 ft x 35 ft x 60 ft deep
- Original estimated volume was approximately 1000 CY
- Sinkhole propagated directly underneath the highway and continued to erode material
- CDOT elected to close a 4 mile stretch for safety, accept for few local resident allowed to park cars on either side of closure.

Approximate Tunnel Alignment
Sinkhole Development Mechanism

Sinkhole development above the railroad tunnel

- Sinkhole size: ~ 35’ x 35’ x 60’ deep
- Tunnel depth at the site ~ 158’ to 175’
- Tunnel size: ~ 17’ W x 20’ H
- Tunnel invert: ~ 180’ to 192’
Probability of Sinkhole Development

Qdpb:
- The area is highly faulted.
- Sheet-like drift from two glaciations.
- Glacial deposits at the site were found to range from 24 to > 50’ in depth overlaying weathered gneiss.
- Clayey sand/boulder/gravel with thickness ≥175’ at the sinkhole.

Sinkhole will develop if the overburden lithology consists of weak materials.

Probability of Sinkhole (Caved Zone)
Reaching Surface
As a Function of Overburden Thickness

Sinkhole Limit and Sinkhole Profile Line (Not to Scale)
Preliminary CDOT Borings

BORING 1:
0'-26' ASPHALT THEN INTERBEDDED SANDY CLAY WITH CLAYEY SAND LENSES AND OCCASIONAL COBBLES. 26' LIMIT OF DRILLING, WEATHERED GRANITE.

BORING 4:
0'-24' ASPHALT THEN SANDY CLAY WITH SAND LENSES AND OCCASIONAL COBBLES. 24' LIMIT OF DRILLING, WEATHERED GRANITE.

BORING 2:
0'-29' ASPHALT THEN CLAYEY SAND AND CLAY WITH SAND LENSES AND OCCASIONAL COBBLES. 29'-46' VOID. 46' LIMIT OF DRILLING, APPARENT METAL.

BORING 3:
0'-50' ASPHALT THEN CLAY WITH SAND LENSES AND OCCASIONAL COBBLES.

Void
17 ft
Sequence 1: Install North and South Cut-off Walls

“Inclined and vertical drilling and injection of low-mobility grout (LMG) into the throat of the sinkhole to provide a cut-off / plug for the sinkhole flow-fill”
Hayward Baker: Project Grouting Sequence (cont.)

Sequence 2: Sinkhole backfilling from surface with “Flow-fill” until hole is filled

Sequence 3: Compaction grouting on a “Grid Pattern” to tunnel elevation and outside of the tunnel alignment
Sequence 3 – Compaction Grouting
“Uses displacement to improve ground conditions”

Grouting Process

- **Installation of Grout Pipe:**
 - Drill or drive casing
 - Location very important
 - Record ground information from casing

- **Initiation of Grouting:**
 - Typical bottom up, but can also be top down
 - Grout flow (rheology) important (low mobility, not necessary low slump)
 - Usually pressure and / or volume of grout limited slow, uniform stage injection
Hayward Baker: Project Grouting Sequence (cont.)

Ideal Grout Make-up

- 100% passing 3/8”
- 15-25% passing #200
- Rounded pea gravel helps
- 10-20% cement by volume
- Slump – Typically less than 2” for pre-treatment and around 1” for underpinning and piles
Grouting Intake 3D Model

Facing South

Isometric Facing Northwest
Once northbound lane is fully compaction grouted, open lane to traffic and repeat similar process on southbound.
ZAPATA: Tunnel Void Mapping

3D Laser and Video Camera Imaging of the Tunnel Geometry

Boreholes 1-N & 2-S locations along the tunnel alignment
Depths: 1-N – 158 ft bgs, 2-S – 174 ft bgs
Void Mapping Tools

Tethered Robotic Downhole Systems
Void Mapping & Imaging
“Real Time Visualization”

Downhole Sonar Void Scanning / Mapping
(Water-filled void)
- Imagenex Digital Multi-frequency Profiling
- One-axis scanning: horizontal plane (360-degree scan)
- Scans: multiple 2-D plans create 3-D model
- Distance measurements: 300 ft
- Accuracy: ± 1 degree

Downhole Laser Void Scanning / Imaging
(Air-filled void)
- MDL: C-ALS
- Scans: 3-D or 2-D horizontal and vertical slices
- Equipped with video camera (~20 ft)
- Distance measurements: 500 ft
- Accuracy ± 0.5 degree

Downhole Video Camera Void Imaging
(Air-filled or water-filled void)
- Images: Vertical and horizontal control
- Video recording capabilities
- Distance measurements ~ 25 ft
Void Mapping Field Activities

Drilling, downhole laser and video camera systems
Void Mapping – Laser Results

Laser Mapping Survey Map: Showing void space in Boreholes 1-N & 2-S
Void Mapping – Laser Results

2D/3D Laser Views – Tunnel void space in Borehole 1-N

Detail Borehole Location 1-N
Detail Site Location

Explanation
- Borehole Location
- Laser Void Space

Colorado Central State Plane
NA83, Zone 13
1-N: N27°7'05"8.7481
E115°50'32".333
1-N: N27°7'05"8.7481
E115°50'32".333
2-S: N27°7'05"8.7481
E115°50'32".333

Distance (ft.)
Distance (ft.)
Elevation (ft.)

State Plane Coordinates
State Plane Coordinates

Looking Down Tunnel

Side View

Plan View

Laser Mapping Results for Voids Space Encountered in Borehole 1-N Highway 24 Tennessee Pass, Colorado

www.zapeng.com
888.529.7243
19
Void Mapping – Laser Results

3D Laser snapshot – Looking south from inside the tunnel
“Borehole 1-N showing collapsed portion of the tunnel”

Civil 3D Flythrough Animation

Fresh Rock Rubble
Old Rock Rubble

~45°
Void Mapping – Laser Results

3D Laser mapping survey map: Showing void space in Borehole 2-S

Laser 3D Animation

225 ft
3D Laser mapping survey: Perspective view of the tunnel from **Borehole 2-S**

- **Depth:** 192 ft
- **Size:** 17 ft W by 20 ft H

Laser Perspective View of the Mapped Tunnel

- **Fallen Timber Supports**
- **Large Timber Supports**

Civil 3D Flyaround Animation
Suggested Tunnel Mitigation Strategy

A combination of compaction grout and foamed-sand filler methods

“To reduce/eliminate the risk for future highway settlement/sinkhole development”
Summary

- Total Cost ~$1.5M
- Flow Fill in Hole: 925 CY
- Low Mobility (Compaction) Grout: 667 CY
- 75 Holes and 6,375 LF of Drilling
- 23 Days to Complete (with added scope)
- Roadway fully opened Friday evening 8/10
- No Interruption to USA Pro Challenge Bike Race
- Accommodated Copper Triangle Bike Race