

Hydraulic Tools Overview

Connecting people, products and places safely and efficiently with customer focus, accountability and environmental sensitivity to enhance the economy and vitality of North Carolina

OUR MISSION

Connecting people, products and places safely and efficiently with customer focus, accountability and environmental sensitivity to enhance the economy and vitality of North Carolina

Hydraulic Tool Categories

- •Flood Warning/ Planning Tools
- Hydraulics Data
- Stormwater
- Hydraulic Calculators

Flood Warning/ Planning Tools

FIMAN-T: Flood Inundation Mapping Alert Network for Transportation

• Gauge-based tool providing near real time awareness of flood impacts to roads and bridges within limited areas around riverine and coastal gages

T-SAPP: Transportation Surge Analysis Prediction Program

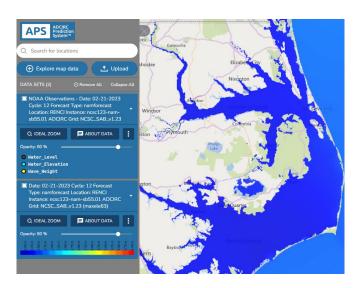
• Predictive tool based on ADCIRC modeling provided by UNC-RENCI Center capable or providing advance awareness of potential coastal roadway flood impacts for entire NC coast specific to individual storms

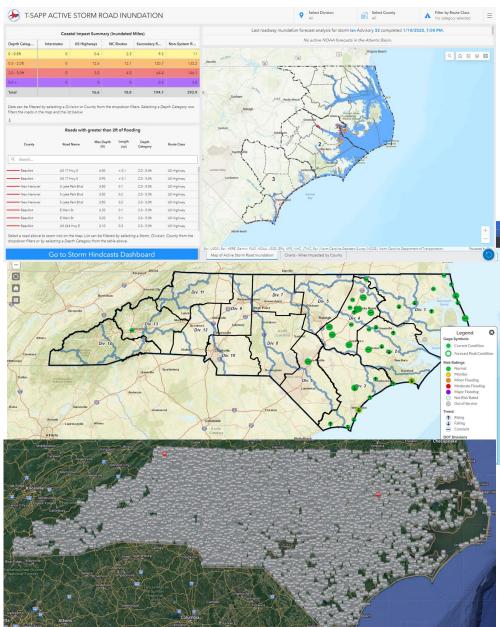
BridgeWatch

• Bridgewatch is a real-time bridge flooding warning system that relies on stream gauges and weather radar to indicate when bridges and culverts are near flooding, actively flooding, or weather conditions are favorable for flooding

RIT: Roadway Inundation Tool

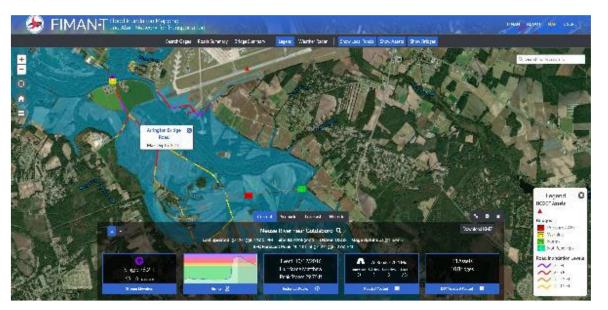
• Planning tool with estimated roadway inundation based on static flood recurrence intervals from FEMA studies

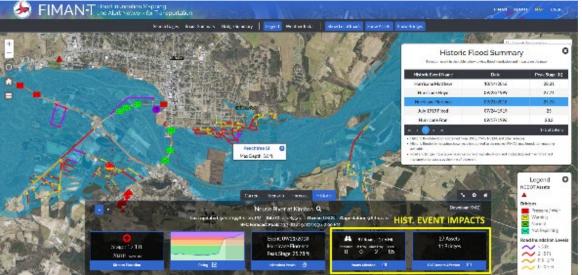

CRIS: Coastal Roadway Inundation System

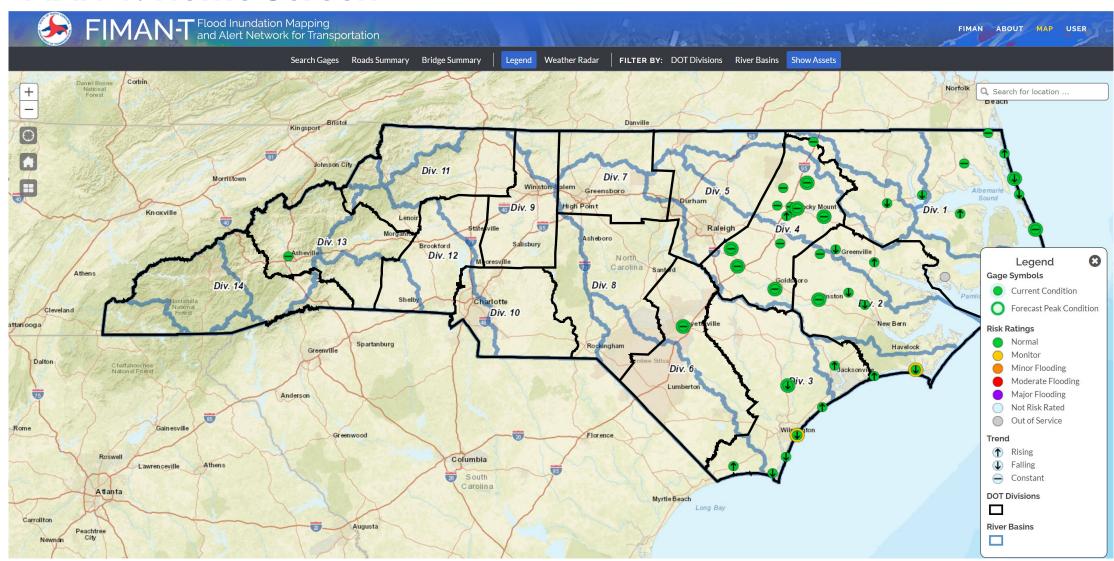

• Planning tool for coastal road inundation based on intervals of static, level pool flooding along the NC coast

Flood Warning Tools-Storm Prep

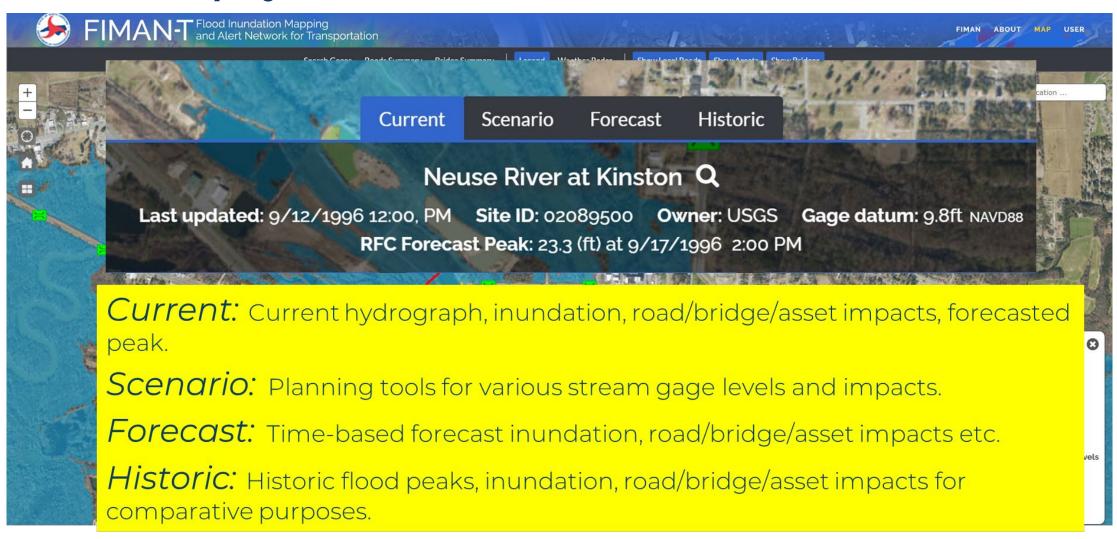
- FIMAN-T
- T-SAPP (Transportation Surge Analysis Predictive Program)
- BridgeWatch

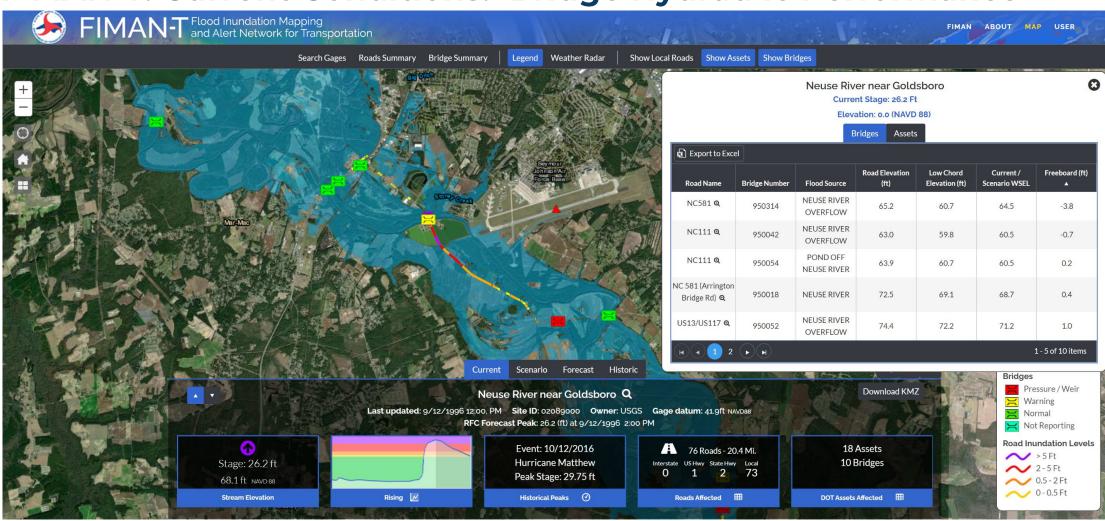


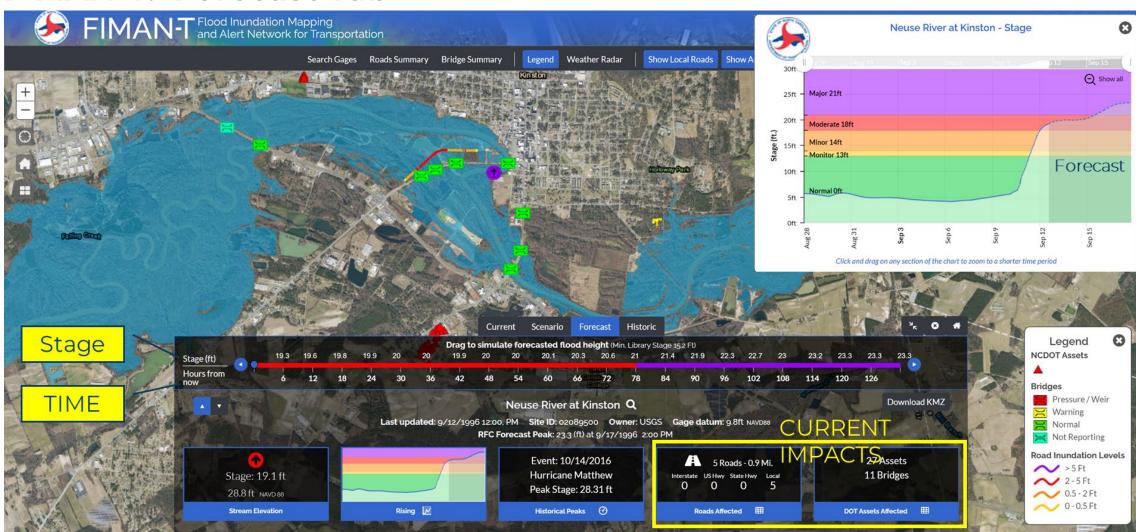


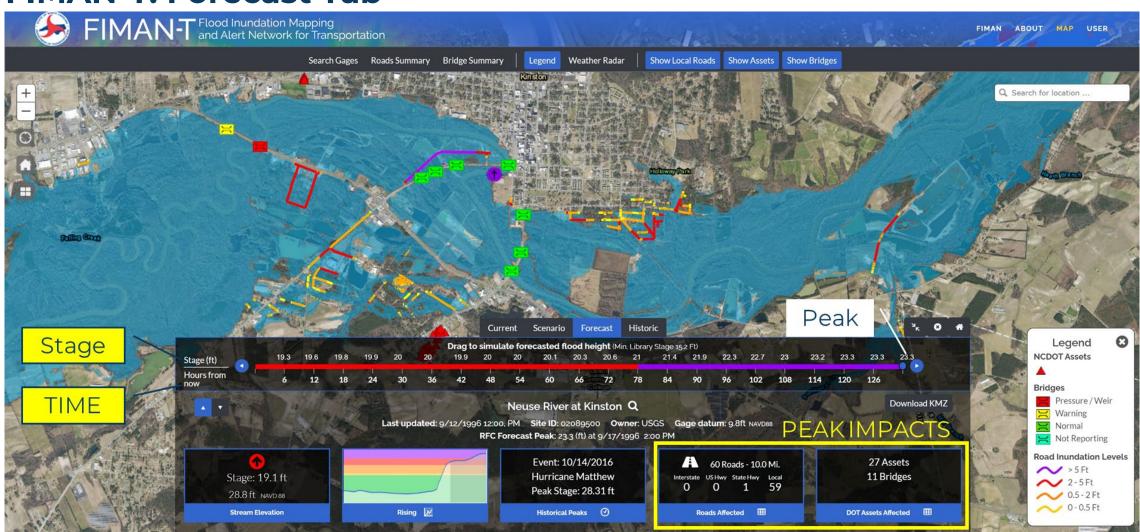

FIMAN-T

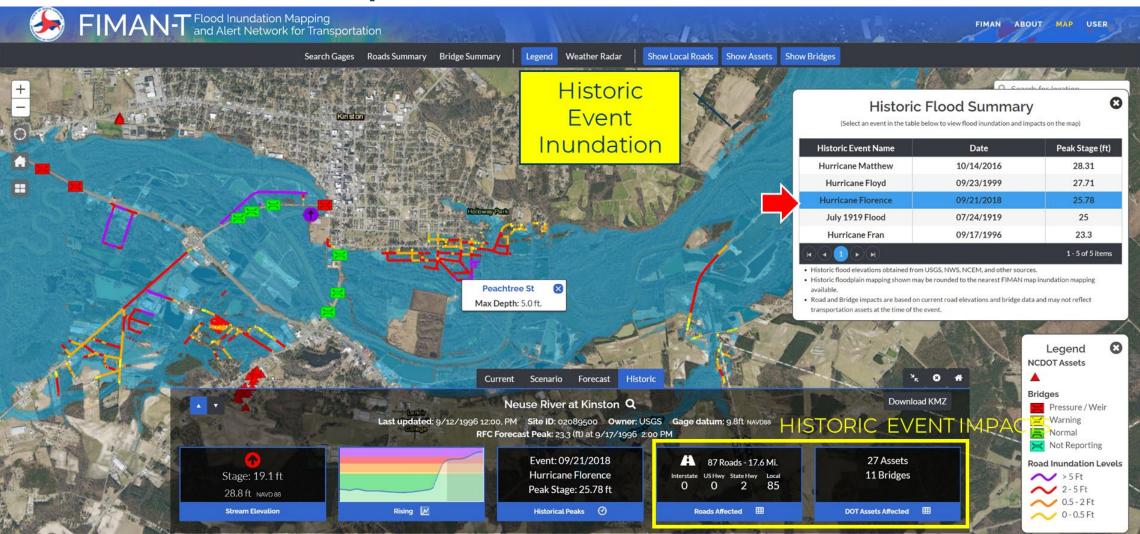
- Leverages North Carolina's 15-year investment in flood warning gauges and geospatial data.
- Provides real time and forecasted roadway inundation depths for high-risk locations.
- Visualized current and forecasted road flooding both upstream and downstream of gauged sites (Riverine and Coastal)
- Visualize NCDOT asset impacts.
- Provides bridge hydraulic performance (freeboard and overtopping) for over 100 bridges.
- Advanced reporting tools.
- Export tools to Google Earth.

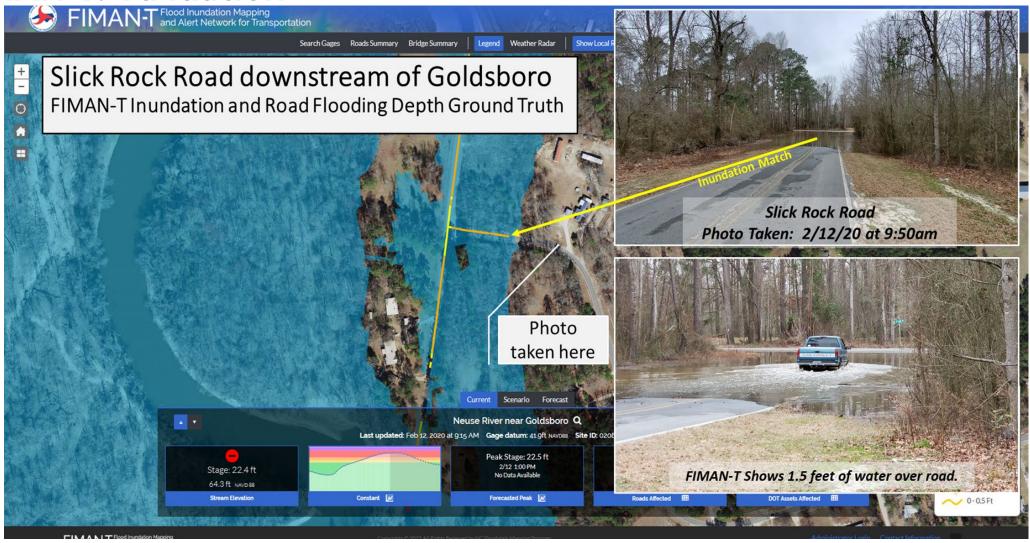



FIMAN-T: Home Screen

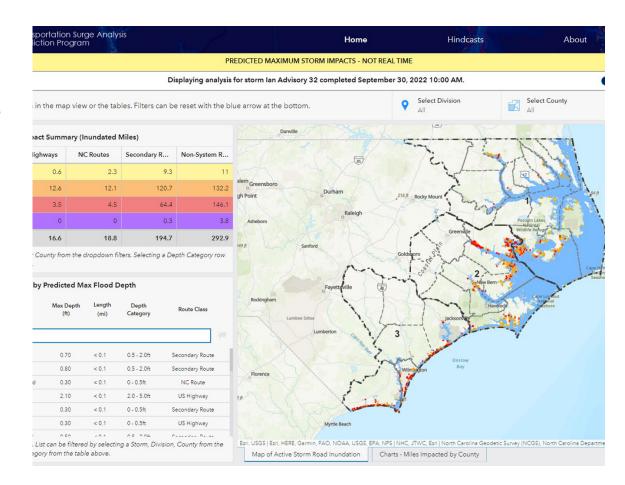

FIMAN-T Display "Tabs"


FIMAN-T: Current Conditions: Bridge Hydraulic Performance


FIMAN-T: Forecast Tab


FIMAN-T: Forecast Tab

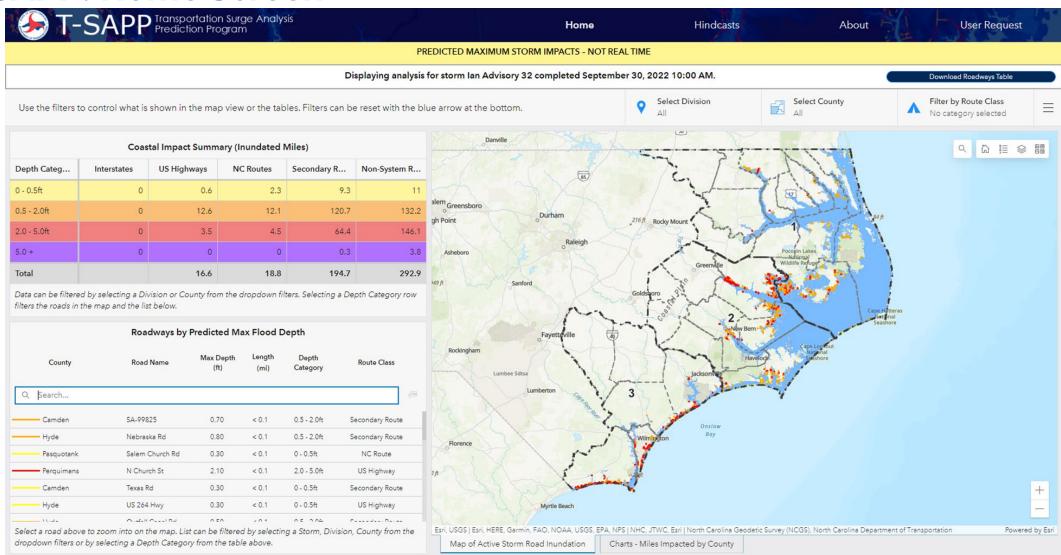
FIMAN-T: Historic Tab / Event Viewer


FIMAN-T: Validation

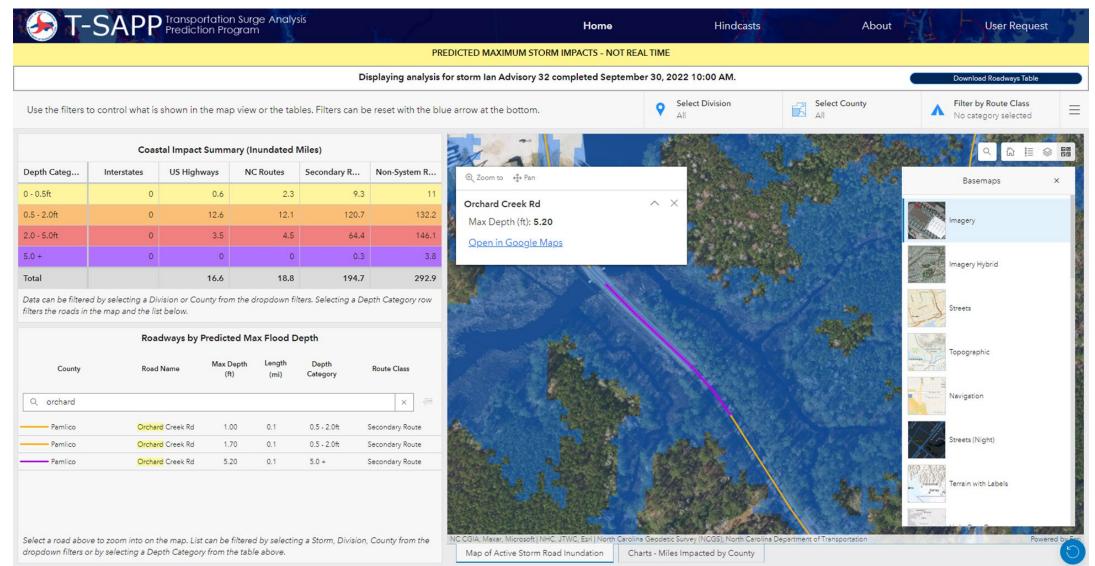
T-SAPP: Transportation Surge Analysis Prediction Program

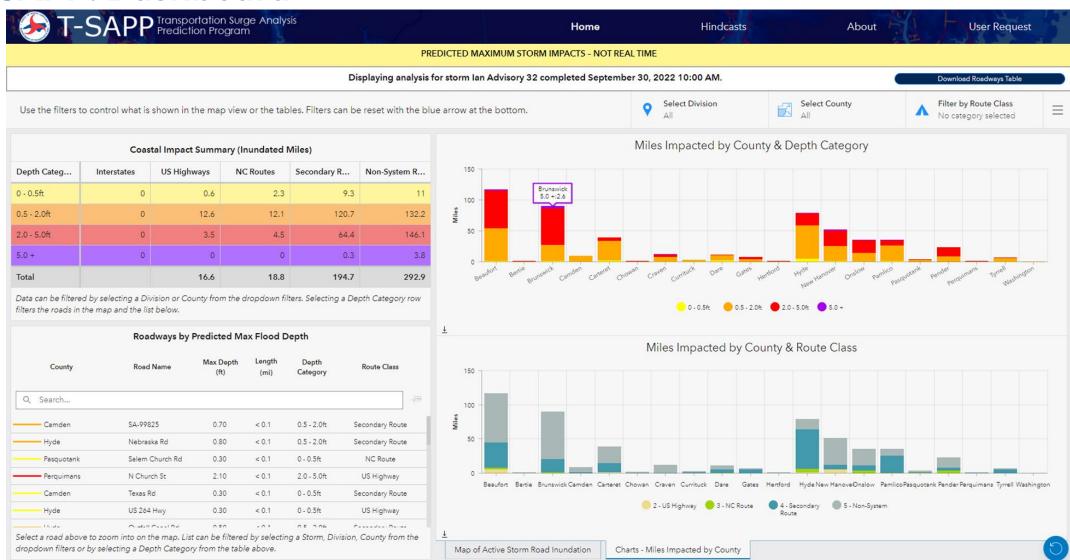
What is T-SAPP?

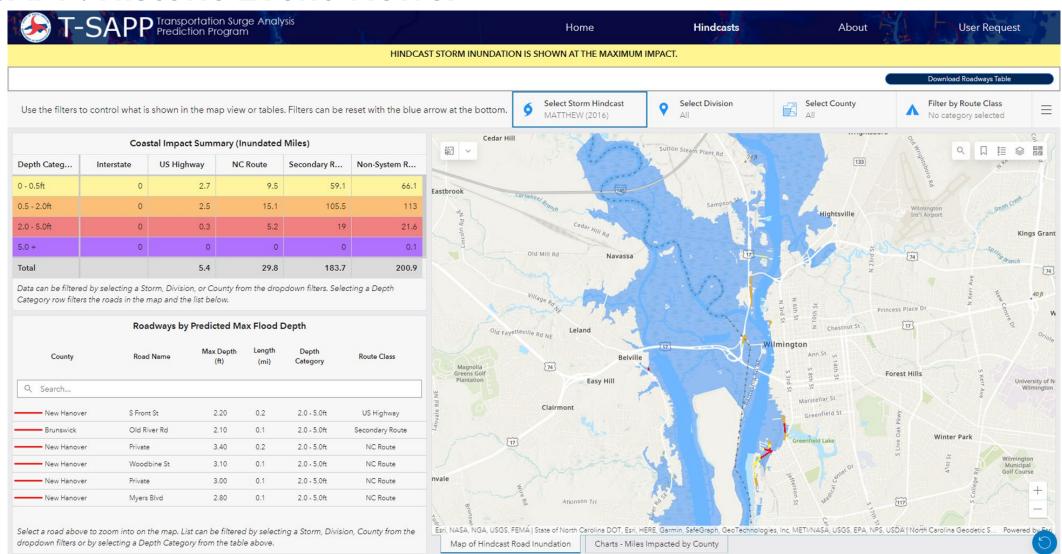
- Storm Surge forecast values (Statewide) are downloaded from APS THREDDS Server Every 6 hours during events.
- Geoprocessing tools to process, develop inundation mapping, inundation depths, roadway depths, bridge overtopping, etc.
- Interactive web mapping application
- Comparison to past storm events (Fran, Floyd, Matthew, Florence, Dorian, Isaias, Ian)


ncdot.gov Hydraulic Tools

T-SAPP: Current Metrics

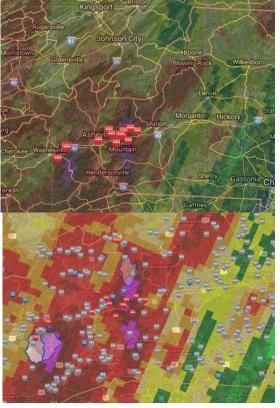

Item	Metric
Active Sites	N/A (Entire Coastline)
Monitored Roadway Miles	10,990 miles
Coastal Bridges Monitored	199
Historic Flood Events Included	7 Fran (1996), Floyd (1999), Matthew (2016), Florence (2018), Dorian (2019), Isaias (2020), Ian (20222)
Historic Impacted Roadway Miles Mapped	6,637 miles
Historic Flood Inundation Area Mapped (7 events)	46,459 sq. miles

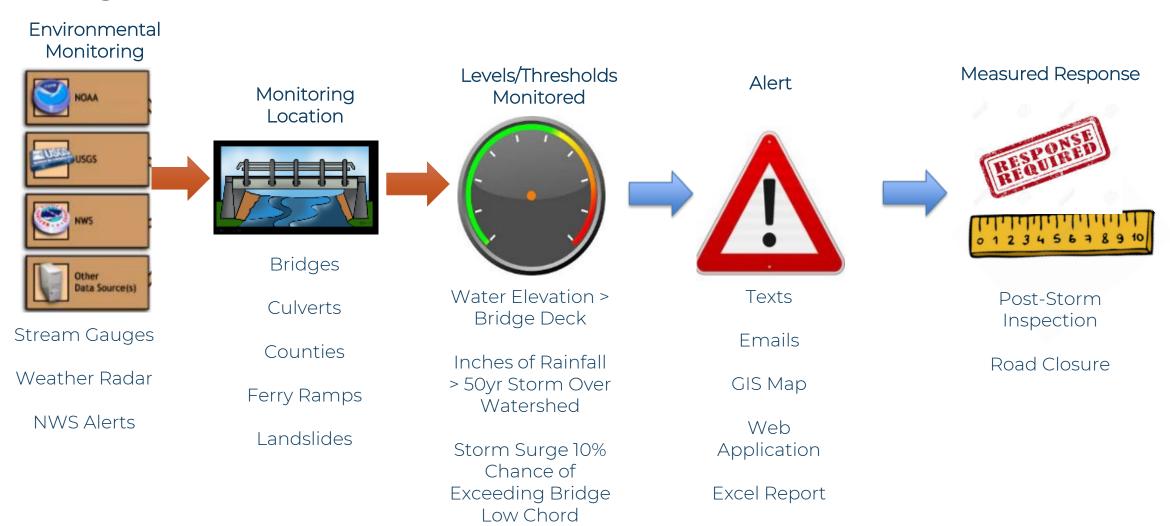

T-SAPP: Home Screen


T_SAPP: Event Viewer

T-SAPP: Dashboard

T-SAPP: Historic Event Viewer


NCDOT BridgeWatch


What is BridgeWatch?

- Real-time monitoring for structures over water.
- Alerted immediately when levels exceed set threshold
- Alerts help identify flooded roadways and scour critical structures impacted by heavy rainfall

Bridge Watch: How it works

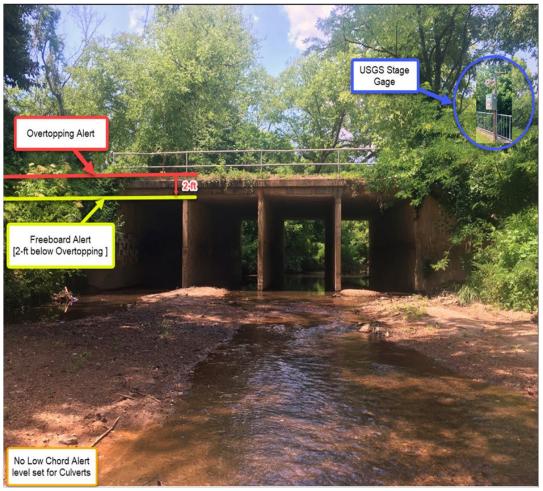
Bridge Watch: Flood Warning and Asset Management

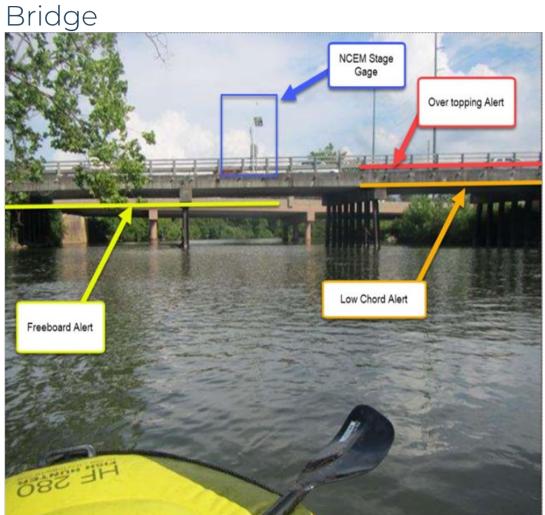
BridgeWatch

Overview: BridgeWatch is an online asset-management service that collects and process data from stream gauges, weather radar, National Weather service, and National Hurricane Center and compares these external datasets to user defined limits. The program sends alert notifications via email or cell phone when user defined thresholds are exceeded.

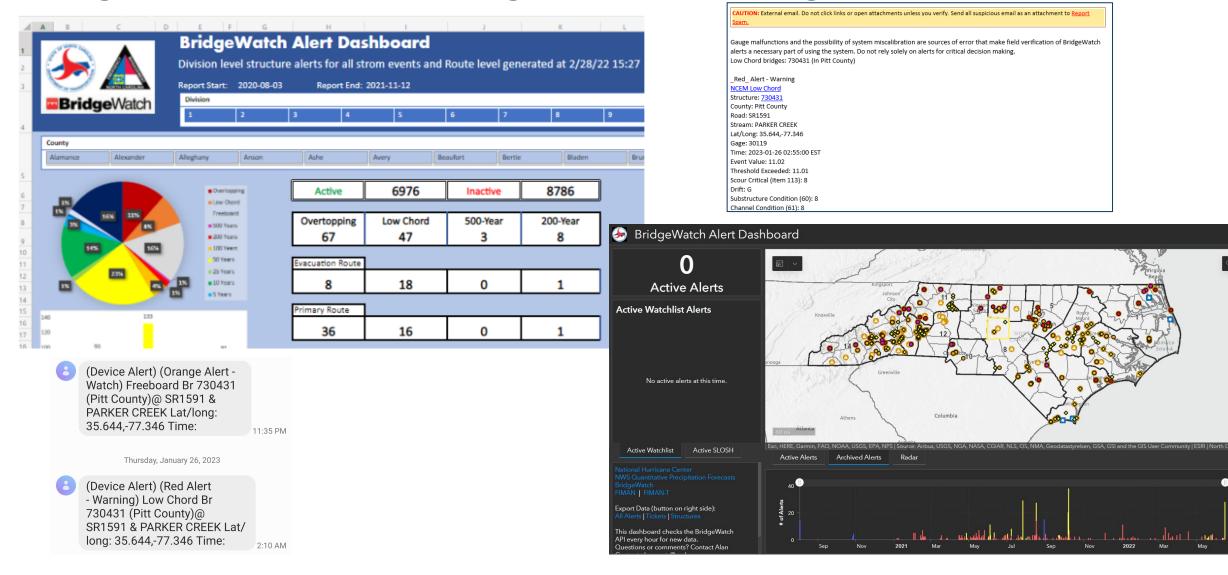
Statistics: Monitoring locations represent NCDOT assets at which parameters are compared to external data sources. Currently, BridgeWatch monitors over 15,000 bridges, approaches, and culverts. Additionally, 25 ferry ramps, 14 levee and flap gate locations near Princeville, and 21 Western Division landslide locations are monitored.

Critical Conditions: The severity and indication of real-world conditions at a monitoring location depends on the alert type and level. There are three alert categories: gauge, rainfall, or storm surge. Color coding of alert levels, that follows the National Weather Service flood risk colors, indicates alert priority. Gauge alerts, based on real-time water levels, are considered the most reliable and highest priority during a storm event. Alert notifications sent via SMS text or email include key details such as severity, type, location of asset, and values exceeded.

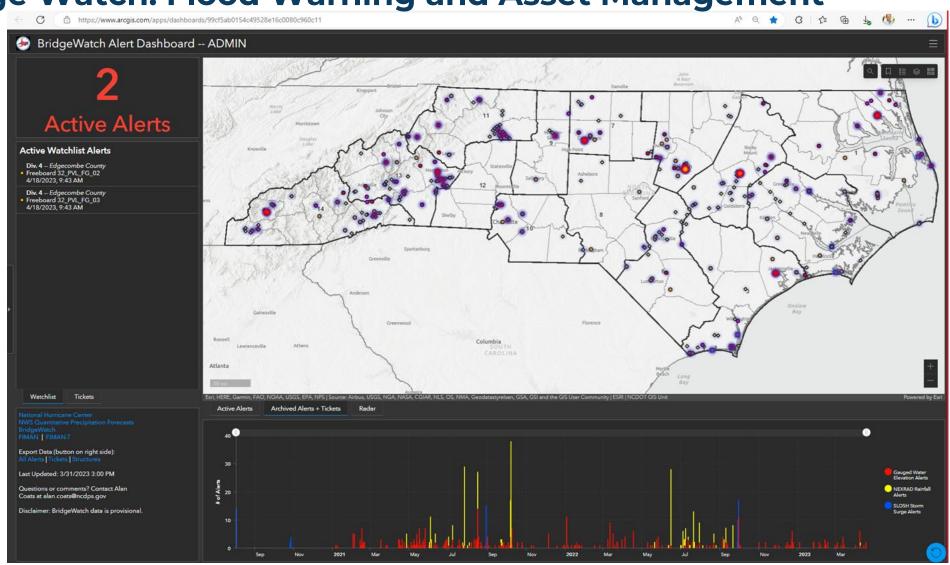

Example of flap gate structure in BridgeWatch with thresholds linked to upstream USGS gage (left), the text alert format for the flap gate (upper right) and field verification of alert (lower right).


Alert Types

- **Gauge Alert, Overtopping, (Warning-Magenta):** Issued when on-site water surface elevation gauge indicates water is overtopping the bridge, bridge approach, or the roadway over a culvert.
- Gauge Alert, Low Chord, (Warning-Red): The low chord is typically the lowest structure member (beam) above the stream or river. Officials are notified when flood waters reach this level. Low chord alerts are not issued for culverts.
- Gauge Alert, Freeboard, (Watch-Orange): Officials are notified when stream levels rise close to a critical level at a structure, which indicates that flooding is approaching the bridge structure or road overtopping for culverts. Generally these alerts are triggered when stream levels are within 2-ft of low chord for bridges or within 2-ft of overtopping roadway for culverts. Some coastal bridges use 1-ft below low chord.
- Rainfall Alert, NEXRAD or QPF, (Watch-Yellow): The system actively monitors NEXRAD for over 15,000 of structure drainage areas statewide. Officials are notified if rainfalls (actual or forecasted) trigger predetermined rainfall intensity thresholds.
- Storm Surge Alerts: National Hurricane Center advisories are monitored and forecasted storm surge levels are compared to bridge elevations. Custom alerts are available for when forecasted storm surge may impact bridges.

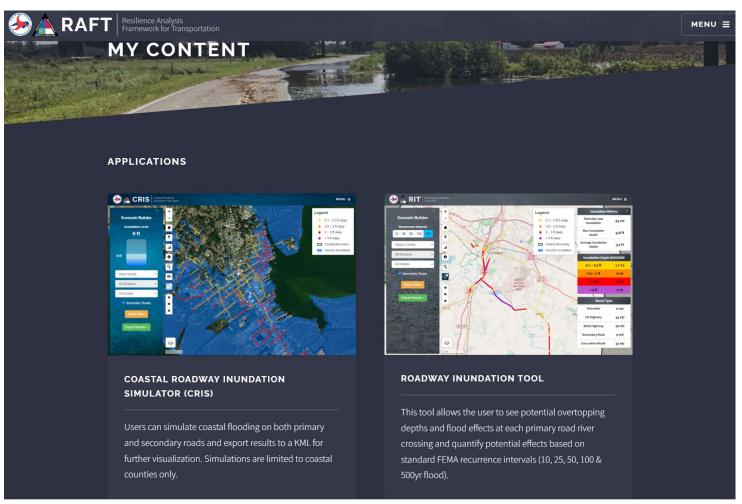

BridgeWatch: Stage Threshold Examples

Culvert



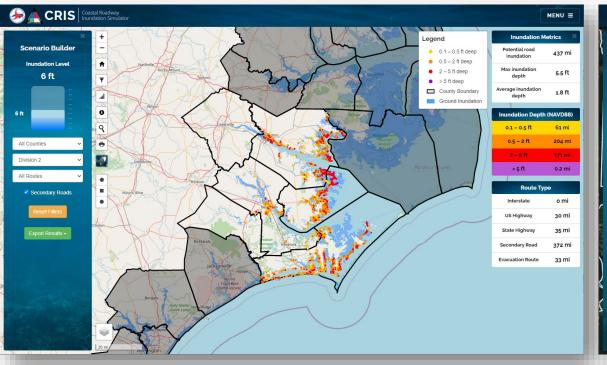
Bridge Watch: Flood Warning and Asset Management

Bridge Watch: Flood Warning and Asset Management



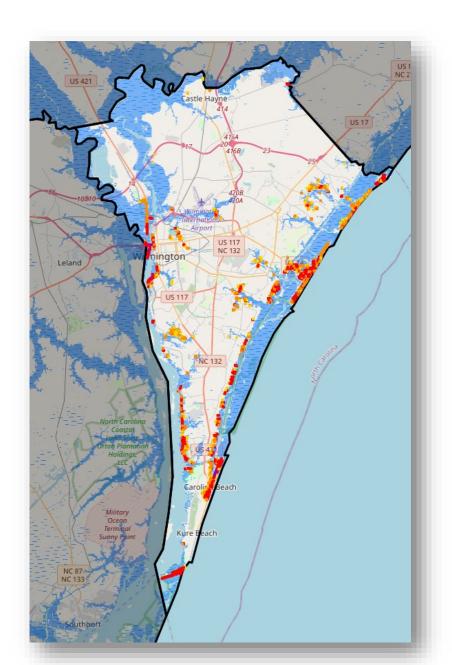
ncdot.gov Hydraulic Tools

Flood Planning Tools-Storm Prep


RAFT: Resilience Analysis Framework for Transportation

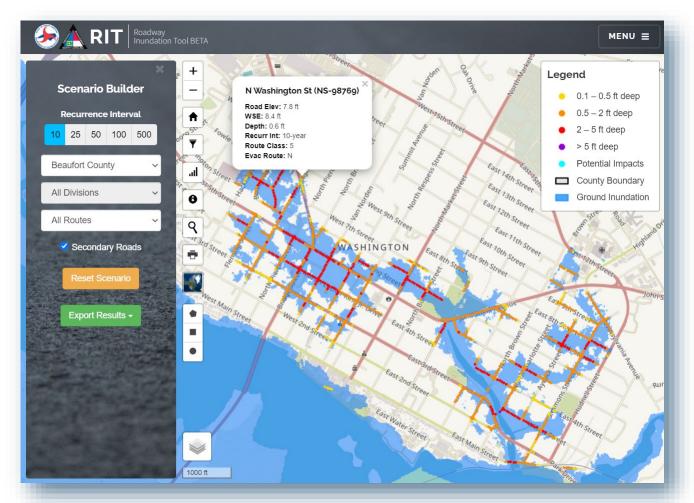
- CRIS: Coastal Roadway Inundation Simulator
- RIT: Roadway Inundation Tool

Coastal Roadway Inundation Simulator (CRIS)

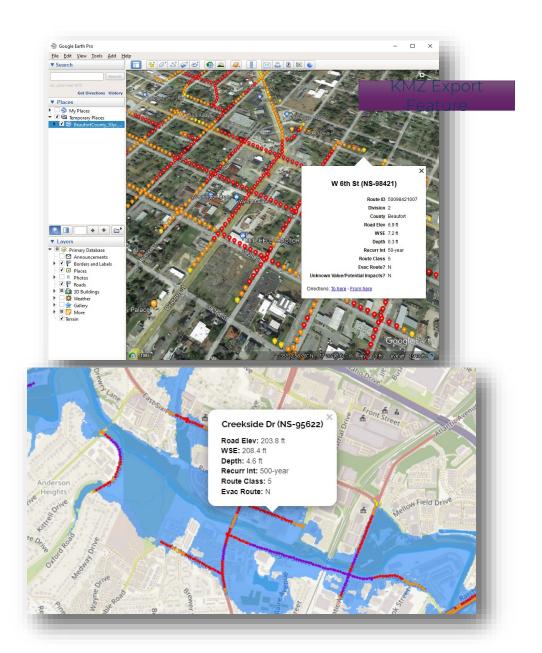

- Predicts impacts of roadway inundation for 23 coastal counties
- Inundation levels range from 1 to 17 feet
- Historic Storm Hindcast Module displays impacts from six past hurricanes


CRIS: Goals

- Quantify and simulate inundation impacts
- Plan for:
 - Emergency response
 - Evacuation
 - Road closure
 - Future resiliency
- Assist with maintenance of roadway infrastructure


CRIS: Metrics and Process

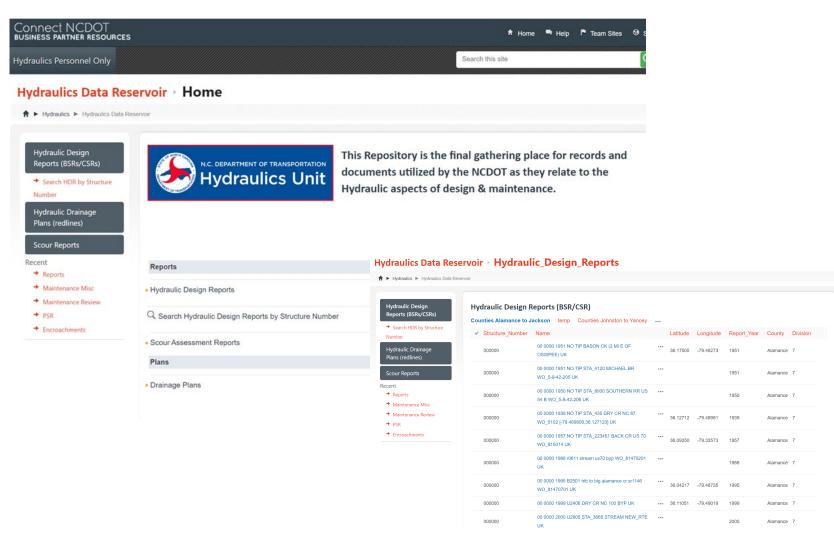
- NC QL2 LiDAR (2014-2015) used to assign roadway centerline elevations (NAVD88 FT)
- LiDAR-based modeling used to produce inundation boundaries
- Points were generated every 50 feet along road centerlines
- At each point, roadway elevations were compared to the selected inundation profile to calculate inundation depth
- Mileage statistics determined by multiplying the number of impacted points by 50


Roadway Inundation Tool (RIT)

- Based on multi-frequency riverine flood studies
 - 10-, 25-, 50-, 100- and 500year recurrence intervals
- Statewide coverage
- Primary and secondary roads
- Originally an ArcGIS Online dashboard
- Built using open-source, scalable technologies

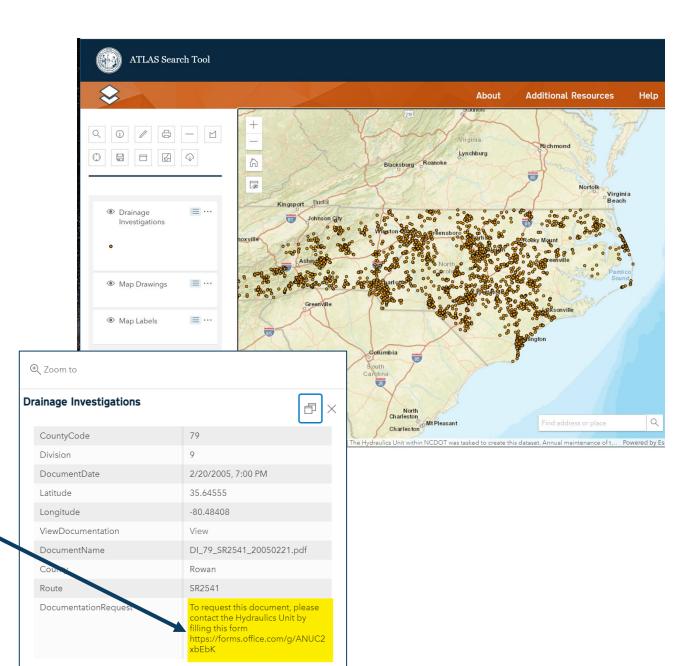
RIT: Goals

- Visualize and quantify road inundation
- Help NCDOT plan for:
 - Emergency response
 - Evacuation
 - Road closure
 - Climate change resiliency
- Provide quick, flexible access to data without reliance on GIS software
- Identify roads that may require higher maintenance or eventual replacement


Hydraulics Data

- Hydraulics Data Reservoir
 - This Repository is the final gathering place for records and documents utilized by the NCDOT as they relate to the Hydraulic aspects of design & maintenance.
- Drainage Investigation Dataset
 - Available on ATLAS
 - The NCDOT Drainage Investigations dataset is a statewide point layer containing locations of Drainage Investigations for tracking and review.
- MPE Multi- Sensor Precipitation Estimates (MPE) -
 - This simple mapping application enables you to visually see precipitation estimates over time for project sites.

Hydraulics Data Reservoir


Available on Site

- Archived BSR/CSR
- Scour Assessments
- Archived Redline
 Drainage plans will
 be added soon.

Drainage Investigation Dataset

- A statewide point layer containing locations of Drainage Investigations for tracking and review.
- Locations contain information related to the location, division involved and related documents.
- Data is used to help facilitate understanding of past investigations and correlation between requests receive to help understand if they are potentially related to past incidents or a larger drainage problem.
- While the layer itself is not restricted, the documents linked to this layer are restricted, and must be requested from the Hydraulics
 Unit using the provided form.
- Use of this dataset for project scoping or screening is merely pre-decisional.

Multi-Sensor Precipitation Estimates

Multi-Sensor Precipitation Estimates

E home Map My Projects My Alerts More MPE Data User Acct Status Cardinal

Welcome mlauffer! | My Info | Logo

Welcome, Matthew Lauffer.. Not you? Click here to logout.

Use the links above or below to navigate this website. View a tutorial on the usage of this website.

The precipitation estimates provided herein are derived from the NWS WSR-88D Doppler Radar. Radar precipitation estimates can be grossly inaccurate, sor adar-based precipitation values are calibrated with the routinely available hourly surface agges. The combined product provides the spatial resolution of radar with the increased accuracy of surface gage networks. These gage-calibrated radar estimates are known as Multi-sensor Precipitation Estimates, or MPE.

There are still errors in MPE. A study by the State Climate Office of North Carolina suggests that MPE compares well with an independent daily precipitation gage network over the Carolinas. Details of this study are available online.

The MPE grids used in this tool are routinely produced by the National Weather Service and National Centers for Environmental Prediction.

MAP

This simple mapping application enables you to visually see accumulated MPE estimates over time. When zoomed in roads, vater features, and town names can be overlayed for reference. Additionally, your project sites can be noted on the map for additional reference. The past 0.12, 24, 48, and 72 hours are available to view spatially. 1-week, 30- and 90-day options are also available.

200000	id.	Landari		Dark Territoria		-	n perse		Brebe
				8.70m	-	-	101/8	-	
/9:000	==	hear		27.00					100
/ p. mar.	25	100	*	100	**	***	143	141	_
/ North	22		-	100					22
15	25	-	-	100		***	-	10	35
130000	10	100		10.0			٠		35

MY PROJECTS

This page shows a list of all projects that you are subscribed to receive precipitation alerts from. Each project has a list of associated sites. Accumulated MPE values are listed for all sites in text format. You can also view all projects.

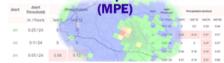
MY ALERTS

This is the alert management system. This is where to go to manage your email alert subscriptions.

Observation Date & Time (EST)	Precipitation (I
2005-11-01 07:00:00	0
2005-11-02 07:00:00	0.093
2005-11-03 07:00:00	0
2005-11-04 07:00:00	0
2005-11-05 07:00:00	0
2005-11-06-07:00:00	0

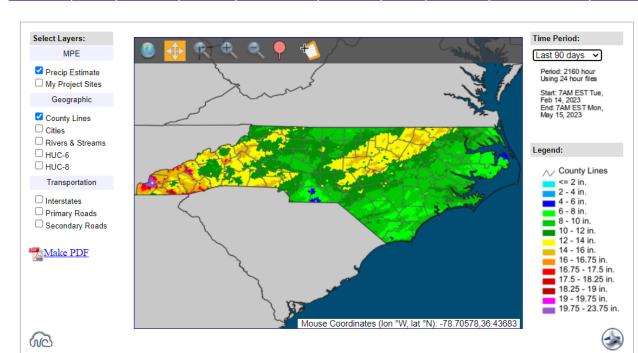
GET MORE MPE DATA

Quickly get the MPE values for any latitude/longitude in and around North Carolina.

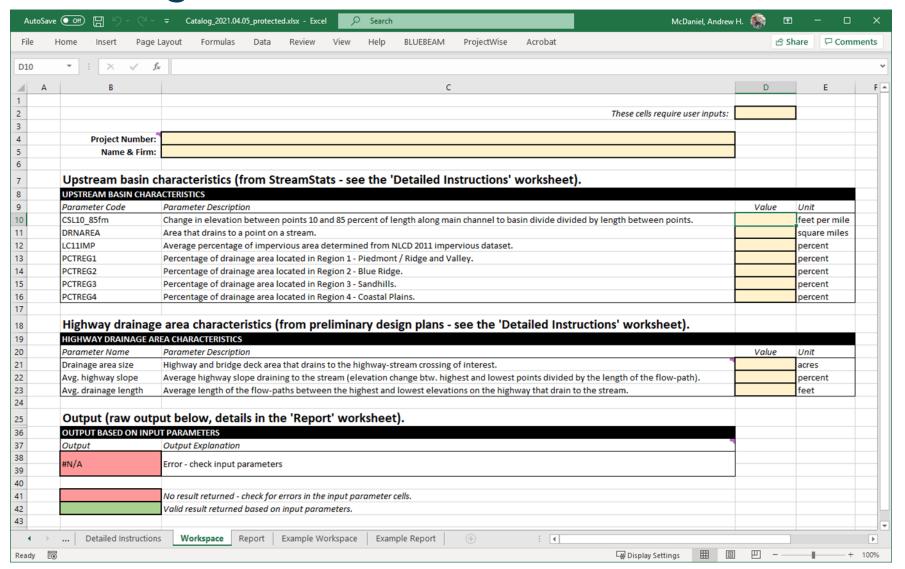


Cardinal Data Request System

Cardinal is a high-powered, user-oriented, one-stop-shop for North Cardina weather and climate data housed at the North Cardina State Climate Office. Cardinal makes weather and climate data more accessible to users, with features and prompts that take the guesswork out of station and parameter identification and selection. The system includes a step-by-step interface to request data, as well as a My Requests page for users to access their requested data and to view their current, in-progress, recently completed, and past data requests.



Multi-Sensor Precipitation Estimates


Map My Projects My Alerts More MPE Data User Acct Status Cardinal State Climate Office Con

Stormwater

- NC-SELDM Catalog Tool
- •BMP Decision Support Matrix
- •Stormwater Control Measure Summary Sheets

NC-SELDM Catalog Tool

BMP Decision Support Matrix

BMP Selection Criteria		Biofiltra	ince ^{1a}	Bioreten			Dry Detention Basin ^{1a}	Filter Strip w/ Level	Filtrati Basin ¹	1a,2	Green Roof ^{1a}	Infiltration Basin ^{1b}	Open Graded Friction	Pav	neable ement Infiltrating ^{1b}	Preformed Scour Hole ^{1a}	Rainwater Harvesting ^{1a,3}	Sand Filter ^{1a,4}	Soil Improve- ment ^{1a}	Storm- water		ile ^{1a}	Tree Box ^{1a}	Wet Detention Basin ^{1a}
	ment ^{1a}			w/o IWS	w/IWS	w/o IWS w/IWS	Basin	Spreader ^{1a}	w/o IWS	w/IWS			Course ^{1a}	Detention**	Infiltrating	Hole	,		ment	Wetland ^{1a}	Dry	Wet		Basin
Removal Efficiency for Parame		_				14-4			111-1		. 12													
Bacteria	Med	Med	u	Hig	;n	Med	Low	Low	High	n	Low ¹²	High	Low	Med	High	Low	Varies	Med	Low	High	LC	w	Med	High
Metals		100				Mad			140			441-4												
Dissolved Metals	Low	Low	$\overline{}$	Me		Med	Low	Low	Med		Low	High	Low	Low	High	Low	Varies	Low	Low	Med	Lo	$\overline{}$	Med	Low
Total Recoverable Metals	Low	Low	/	Hig	n	Med	Med	Med	High	n	Low	High	Low	Med	High	Med	Varies	Low	Low	High	LC	w	Med	Med
Nutrients																								
Dissolved Nitrogen ⁵	Low	Low	Med	Med	High	Low Med	Low	Low	-	High	Low	High	Low	Low	High	Low	Varies	Low	Low	Med	Low	Low	Low	Low
Total Nitrogen ⁵	Low	Low	Med	Med	High	Low Med	Low	Low	_	High	Med	High	Low	Low	High	Low	Varies	Low	Low	High	Low	Med	Med	Low
Dissolved Phosphorus	Med ¹¹	Med	11	Med	d ¹¹	Med ¹¹	Low	Low	Med	111	Low	High	Low	Low	High	Low	Varies	Med ¹¹	Low	Med	Low	Low	Med ¹¹	Low
Total Phosphorus	Med	Med	d	Hig	;h	Med	Med	Low	High	h	Med	High	Low	Med	High	Low	Varies	Med	Low	High	Low	Med	Med	Med
Oil and Grease	High	High	h	Hig	gh	High	Med	Med	High	h	N/A	High	Med	Med	High	Med	Varies	Med	Med	High	M	ed	High	Low
Organics	High	High	h	Hig	;h	High	Med	Med	High	h	Med	High	Low	Low	High	Med	Varies	Med	Med	High	M	ed	High	Low
Temperature	Med	Med	d	Hig	ţ h	Med	Low	Med	High	þ	High	High	Low	_	ligh	Med	Low	Med	High	Low	Lo	w	High	Low
Total Suspended Solids	High	High	h	Hig	ţ h	High	Med	Med	High	h	High	High	Med	-	ligh	Med	High	High	Med	High	Hi	gh	High	High
Trash	Med	High	h	Hig	g h	High	High	High	High	h	N/A	High	Med	1	ligh	High	High	High	Med	High	M	ed	High	High
Water Quantity																								
Runoff Volume Reduction	Med	Low	Med	Med	High	Med High	Med	Low	Med	High	Med	High	Low	Low	High	Low	Varies	Low	Med	Low	Lo	w	Med	Low
Peak Flow Control	Low	Low	V	Me	ed	Med	High	Med	Med	d	Med	High	Low	Med	High	Low	Varies	Med	Low	High	Lo	w	Low	High
Siting Constraints and Other Im	plementat	ion Consi	deratio																					
Space Requirement	Low	Low	V	Me	ed	Med	Med	Low	Med	d	Low	Med	Low	_	.ow	Low	Low	Med	Low	High	Lo	w	Low	High
Environmental Issues ⁶																								
Contaminated Soils ⁷	Use liner	Use lin	ner	Use I	iner	Use liner	Use liner	Use liner	Use lir	ner	Yes	No	Yes	Use liner	No	No	Yes	Use liner	No	Use liner	Use	liner	Use liner	Use liner
Physical Site Limitations ⁶																								
Karst Topography	Use liner	Use lin	ner	Use I	iner	Use liner	Use liner	Yes	Use lin	ner	Yes	No	Yes	Use liner	No	Yes	Yes	Use liner	Yes	Use liner	Y	es	Use liner	Use liner
Shallow Bedrock ⁸	Yes	Yes	,	Ye	S	Yes	Yes	Yes	Yes	5	Yes	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Y	es	Yes	Yes
Shallow Water Table ⁹	No	Yes	,	No	0	No	No	Yes	No		Yes	No	Yes	Yes	No	Yes	Yes	No	Yes	Yes	No	Yes	No	Yes
Steep Slopes (>5%) ¹⁰	No	Yes	,	No	0	No	No	Yes	No	,	Yes	No	Yes		No	No	Yes	No	Yes	No	N	0	No	No
Cost Considerations															_									
Construction Cost	\$-\$\$	\$\$-\$5	\$\$	\$-\$	\$	\$-\$\$	\$-\$\$	\$-\$\$	\$-\$\$	\$	\$\$-\$\$\$	\$-\$\$	\$\$-\$\$\$	\$5	-\$\$\$	\$	Varies	\$-\$\$\$	\$-\$\$	\$-\$\$		ŝ	\$-\$\$	\$-\$\$
O&M Cost	\$-\$\$	SS		\$-\$		\$-\$\$	\$-\$\$	\$	\$		\$-\$\$	\$-\$\$	ŚŚ	\$5	-\$\$\$	\$	Varies	\$-\$\$\$	\$	\$-\$\$		5	\$\$-\$\$\$	\$-\$\$

¹ "High", "Med", "Low", or "N/A". ¹³ EMC-based pollutant reduction. ¹⁶ Load-based pollutant reduction.

² All NCDOT Bioretention and Filtration Basin facilities include underdrain; if no underdrain, see Infiltration Basin.

³ Water quality and quantity performance varies based on size of system and use of captured water.

⁴ For Sand Filter, an enclosed chamber type system (e.g., Austin/Delaware) is assumed.

⁵ Note that nitrogen concentrations in roadway runoff are generally low; this reduces the removal efficiency of many BMPs.

⁶ "Yes" indicates BMP is suitable for locations with a particular siting constraint. "No" indicates that the BMP is not suitable.

⁷ When contaminated soils are present, consultation with the Geotech Unit and Hydraulics Unit is highly recommended.

⁸ For suitable BMPs, it may be necessary to increase practice footprint and/or install an impermeable liner to achieve desired performance.

⁹ For suitable BMPs, an impermeable liner may be required. Additional investigation and consultation with Geotech and Hydraulics Units recommended.

¹⁰ For green roof, slope refers to roof pitch. Note that design modifications are required for roof pitch >8% (per NCDEQ).

¹¹ With media amended or enhanced to increase dissolved P removal.

¹² Green roofs are not typically a significant source of bacteria.

Stormwater Control Measure Summary Sheets

- To be a part of the 3D series (Drainage Summary) sheets in plan sets
- Auto-populated from entries in the stormwater management plan

BY:		DATE:								08-05-21)							PIPROJECT N	10.	SHEE
Y:		DATE:		J														T-1234		
										NORTH										
Note: Not inte	ended for use in determining bid quantities.	Only a stor	reseater control a	neasure device	e summary list for	easy reference an	I location.	DIV	/ISIO	N OF HI	GHWA	YS								
	SUMMARY OF STORM	WATER	CONTROL	MEASU	RES			SUMMARY OF STORM	WATER	CONTROL	MEASU	RES			SUMMARY OF STORM	VATER	CONTROL	MEASUE	CES	
CONST	SCM TYPE	LINE		Location			CONST	SCM TYPE	LINE	STATION	Location			CONST		LINE		Location		
SHEET NO.	SCM TYPE	LINE	STATION	LT/RT/CL	Latitude	Longitude	SHEET NO.	SCM TYPE	LINE	STATION	LTIRTICL	Latitude	Longitude	SHEET NO.	SCM TYPE	LINE	STATION	LTIRTICL	Latitude	Longitue
4	Bioretention Basin	L	10+25	LY	30.1265	-78.1265	-		_							_				
4	Swale	L	10+50	RT	30.1234	-78.2561														
4	Swale	L	10+75	LT	30.1355	-78.15843														
5	Dry Detention Basin	L	15+62	RT	1.2654	-79.5824			_											
6	Swale	Y1	25+00	RT	31,2654	-79.5264	-		-					_		_				
_		_	_	_			-		-	_	_			_		-	_			_
									_					-						
			_						_											
-			_				_		_					_		_				
\vdash		-		-			-	-	-	_	_			\vdash	l	_	_			-
\vdash		_	_	_			_		-			_		\vdash		_	_			
		_	_	_	 		-		_				_	\vdash		_				
_		_		-			-		-		_			-		_				_
-		-		-			-		-		_			_		-				
							-		_				_	-		_				
									_											
									_							_				
		_		_			-		-					-						
_							-		_	_	_			-		_	_			
-			_				_		-					_		-				
-																				
\vdash				-			-		-					-	l	_				_
\vdash		-		-	-		-	 	+		_		\vdash	\vdash		—				-
\vdash			_	_			_		-			_		\vdash			_			_
									\perp											
\vdash			_	_			_		_				\vdash					\vdash		
-		-	_	-	-		-	-	-	-			\vdash	-	-	-	-			-
\vdash		_	_	_			_		-			_		\vdash		_				
				_	 		_	1	_				_		l	_				
									_											
\vdash		-	_	-	-		-	-	-	-			\vdash	-	-	—	-			-
+		-		-	-		-	 	+		_		\vdash	\vdash		_				-
\vdash							\vdash	 	_				-	\vdash						
		_	_	_	 		-		_					\vdash		_				i
-																				

Completing 3D Series Hydraulic Summary Plan Sheets. Including Drainage Summary Sheets and Stormwater Control Measure Summary Sheets

August 5, 2021

Construction plan sheets include 3D Series drainage summary sheets. Traditionally these sheets have included the summary of pipe and drainage structure types. With the implementation of Project Delivery Network version 2.0 the 3D series sheets will now also include stormwater control measure summaries for projects where stormwater controls are included. Not all projects will include stormwater control measures, thus these sheets should be the last sheets within the 3D series.

Drainage Summary Sheets:

Drainage summary sheets should be filled out per guidance in the "Drainage Summary Sheet – Steps for Hydraulic Users" located on the Connect site here:

 $\frac{https://connect.ncdot.gov/resources/hydro/Geopak%20Applications%20Documents/Drainage%20Summary%20Sheet%20-%20Hydro%20Steps.pdf$

Once the traditional drainage summary sheets have been filled out the user should add the stormwater control summary sheets starting with the next available consecutive page number.

Stormwater Control Measure Summary Sheets:

The Highway Stormwater Program (HSP) has amended the Stormwater Management Plan (SMP) template to automate the creation of the stormwater control measure summary sheet. Hydraulic design engineers are required to complete a Stormwater Management Plan (SMP) for all projects and should always use the latest SMP template version found on the Connect Site here:

https://connect.ncdot.gov/resources/hydro/Pages/HSPProductPages.aspx?PROD=SMP

Users should complete the SMP per the instruction included in that document. As a general summary, users should fill out the 'General Project Information' and 'Waterbody Information' tabs along with any applicable stormwater control measure tabs (Swales, Filter Strip, PSHs & Energy Dissipators, Level Spreader & HSB, Other Toolbox BMPs, Other Non-Toolbox BMPs). These tabs are illustrated in Figure 1.

Hydraulic Calculators

- Hydroplaning Assessment Tool
 - •This tool will assist in completing hydroplaning assessments, when required, on the projects
- Outlet Analysis
 - Coming Soon

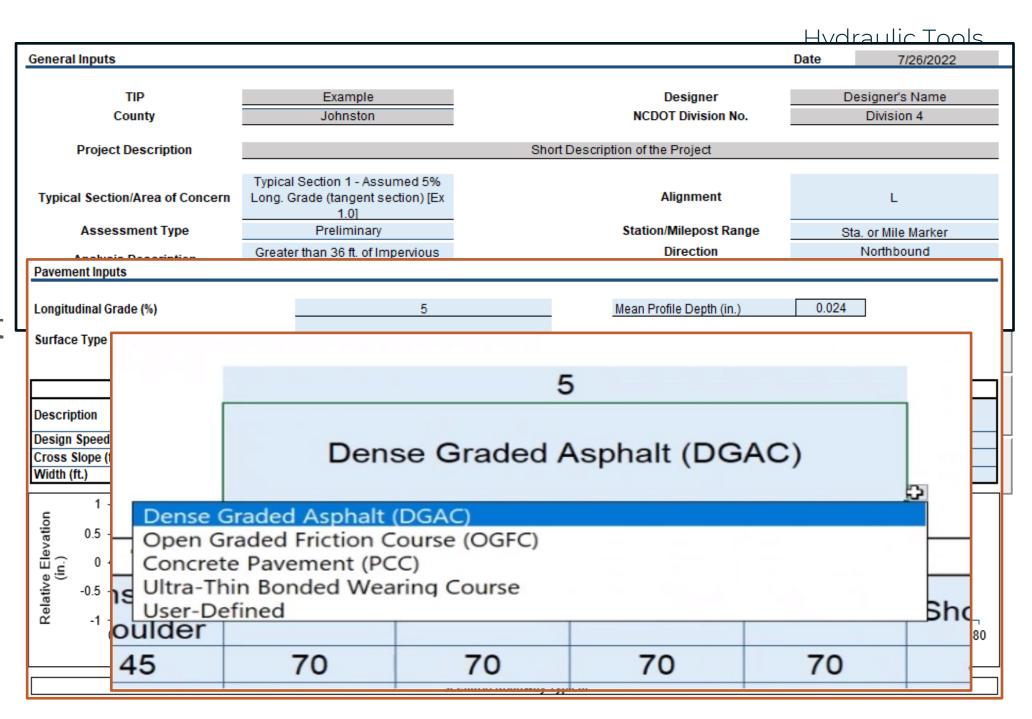
Hydroplaning Assessment Tool

https://connect.ncdot.gov/resources/hydro/DrainageStudiesGuidelines/NCDOTHydroplaningAssessmentTool.xlsm

Hydraulic Tools

Hydroplaning Analysis Tool

Or maril												
General Inputs									Date	7/26	2022	
TIP		Example					Designe			esigner's Na	me	
County		Johnston					T Divisi			Division 4		
Project Description					Short Des	cription of t	he Project					
Typical Section/Area of Concern		ection 1 - As le (tangent s 1.01	sumed 5% section) [Ex			,	Alignmen	it		L		
Assessment Type		Preliminary	ļ			Station	/Milepos	t Range	St	a. or Mile Ma	irker	
Analysis Description	Greater th	an 36 ft. of I Pavement				١	Direction	n		Northboun	d	
Analysis Notes		ided asphali slope over :	t and a 0.02 3 lanes fails									
Pavement Inputs												
Longitudinal Grade (%)			!	5			Mean Pro	ofile Depth (in.)	0.024]	
Surface Type		Den	se Graded /	Asphalt (DG	AC)							
	1	2	3	4	5	- 6	7	8	9	10	11	12
Description	Inside Shoulder	Lane 1	Lane 2	Lane 3	Lane 4	Shoulder		•	3	10	"	12
Design Speed (mph)	45	70	70	70	70	45						
Cross Slope (ft/ft)	-0.04	-0.02	0.02	0.02	0.02	0.04						
Vidth (ft.)	12	12	12	12	12	14						


lative Elevation	0.5 tane 1	Lane 2	lane 3	Jane A	Shoulder		
ď	-1 +	20	30 40	50	60	70	80
			Lateral Distance	(ft.)			

				CVCHIGHT						
Risk Analysis Results										
Based on AVERAGE VFT, I	PAYDRN F	IPS Mod	el, and a v	orst-case	e scenari	o rainfall	intensity	(in/hr)		
Description	side Should	Lane 1	Lane 2	Lane 3	Lane 4	Shoulder				
Rainfall Intensity (in/hr)	4.0	2.0	2.0	2.0	2.0	4.0				
₩ater Film Thickness (in)	0.081	0.036	0.036	0.061	0.080	0.136				
Driver Speed (mph)	45.0	58.0	58.0	58.0	58.0	45.0				
Hedronlaning Coood* (mak)	EA Q	00.7	00.7	E0.7	EE 0	E9.1				

* The speed has been adjusted up +5 mph to account for Modern Tires.

<u>Inputs</u>

- General
- Pavement I
- Roadway

Scenario Results

Risk Analysis Results

(Based on AVERAGE WFT and PAVDRN HPS Models)

Risk Analysis Results

Based on AVERAGE WFT, PAVDRN I

Description	S
Rainfall Intensity (in/hr)	Γ
Water Film Thickness (in)	Γ
Driver Speed (mph)	Γ
Hydroplaning Speed* (mph)	

^{*} The speed has been adjusted up +5 m

Possible Hydroplane Conditions High

High: HPS is ≥ 4 mph Below the Pre **Low:** HPS is ≥ 2 mph Below The Pre Mitigation methods needed and productiver responsibility.

None: HPS is greater than Predicte

Predicted Water Film Thickness (i	n.))
-----------------------------------	-----	---

:[Plane Number	1	2	3	4	5	6	7	8	9	10	11	12
'[Intensity (in/hr)	iside Shoulde	Lane 1	Lane 2	Lane 3	Lane 4	Shoulder						
	0.1	-0.012	-0.014	-0.014	-0.009	-0.005	-0.004						
• [0.25	-0.002	-0.006	-0.006	0.002	0.009	0.010						
(0.5	0.009	0.003	0.003	0.015	0.024	0.027						
•	1	0.025	0.016	0.016	0.034	0.047	0.051						
- [2	0.048	0.036	0.036	0.061	0.080	0.086						
	3	0.066	0.051	0.051	0.082	0.106	0.113						
۱.	4	0.081	0.064	0.064	0.100	0.128	0.136						

Predicted Driver Speed (mph)

	Plane Number	1	2	3	4	5	6	7	8	9	10	11	12
ľ	Intensity (in/hr)	iside Shoulde	Lane 1	Lane 2	Lane 3	Lane 4	Shoulder						
	0.1	45.0	70.0	70.0	70.0	70.0	45.0						
. [0.25	45.0	70.0	70.0	70.0	70.0	45.0						
	0.5	45.0	64.0	64.0	64.0	64.0	45.0						
	1	45.0	62.0	62.0	62.0	62.0	45.0						
	2	45.0	58.0	58.0	58.0	58.0	45.0						
	3	45.0	45.0	45.0	45.0	45.0	45.0						
ıC	4	45.0	45.0	45.0	45.0	45.0	45.0						

Predicted Hydroplaning Speed (mph)

"These speeds are increased by 5MPH to account for Gunaratne research."

76 ,	These species are included by elin 11 to decount or current of the												
•	Plane Number	1	2	3	4	5	6	7	8	9	10	11	12
Dγ	Intensity (in/hr)	side Shoulde	Lane 1	Lane 2	Lane 3	Lane 4	Shoulder						
'	0.1	999.0	999.0	999.0	999.0	999.0	999.0						
O	0.25	999.0	999.0	999.0	132.5	94.2	89.9						
	0.5	93.9	122.5	122.5	82.1	73.1	71.3						
	1	72.9	80.6	80.6	67.6	62.4	61.3						
	2	62.3	66.7	66.7	58.7	55.0	54.2						
te	3	57.7	61.3	61.3	54.7	52.6	52.5						
_	4	54.9	58.1	58.1	52.8	52.2	52.1						

Typical Section/Area of Concern Rollover Transition [Ex 3.0]

Assessment Type Final

Analysis Description Superelevation Transition

Superelevation Transition # of lanes 3 Factor

Superelevation Transitions

Faile with Dence Graded Acabalt

Risk Analysis Results

Based on AVERAGE WFT, PAVDRN HPS Model, and a worst-case scenario rainfall intensity (in/hr)

1.5

Pavem

Longitu	Max WFT Condition within the SE Rollover										
	Rainfall Intensity (in/hr)	2.0									
Surface	Water Film Thickness (in)	0.106									
	Driver Speed (mph)	58.0									
	Hydroplaning Speed* (mph)	52.6									
1	<u> </u>										

Descrip * The speed has been adjusted up +5 mph to account for Modern Tires.

Design Speed (mph)	45	70	70	70	70	45			
Cross Slope (ft/ft)	-0.04	-0.02	0.02	0.02	0.02	0.04			
Width (ft.)	12	12	12	12	12	14			

Hydraulics Designer:	Designer's Name
Reviewer:	
Date:	7/26/2022
Project TIP #:	Example

Final Hydroplaning Assessment

Area of Concern	Analysis Description	Alignment	Station	Direction	Lane	Design Speed (mph)	Rainfall Intensity (I, in/hr)	Long. Slope (%)	Cross Slope (ft/ft)	Pavement Width (ft)	Pavement Surface Material	Hydroplaning Average WFT (in)	PAVDRN Hydroplaning Speed (mph)	Predicted Driver Speed (mph)	Analysis Notes	User-Defined Pavement Notes
Typical Section 1 - Max. Long Grade (tangent section) [Ex 2.0]	Greater than 36 ft. of Impervious Pavement	L	Sta. or Mile Marker	Northbound	Lane 4	70.0	2.0	3.3	0.02	36.0	DGAC	0.07	56.1	58.0	0.02 ft/ft cross slope on the exterior produces more potential for hydroplaning	
Typical Section 1 - Max. Long Grade (tangent section) [Ex 2.1]	Mitigation	L	Sta. or Mile Marker	Northbound	Lane 4	70.0	2.0	3.3	0.03	36.0	DGAC	0.07	57.6	58.0	No Hydroplaning potential w/ 0.03 ft/ft Exterior Lane cross slope	
Typical Section 1 - Max. Long Grade (tangent section) [Ex 2.2]	Mitigation	L	Sta. or Mile Marker	Northbound	Lane 4	70.0	2.0	3.3	0.03	36.0	PCC	0.06	60.1	58.0	Concrete Pavement (PCC) shows no potential for Hydroplaning	
Typical Section 1 - Max. Long Grade (tangent section) [Ex 2.3]	Mitigation	L	Sta. or Mile Marker	Northbound	Lane 4	70.0	2.0	3.3	0.03	36.0	UTBWC	0.05	60.9	58.0	Ultra-Thin Bonded Wearing Course Surface shows no potential for Hydroplaning	
Typical Section 1 - Max. Long Grade (tangent section) [Ex 2.4]	Mitigation	L	Sta. or Mile Marker	Northbound	Lane 4	70.0	2.0	3.3	0.03	36.0	OGFC	0.04	63.8	58.0	Open Graded Friction Course Surface shows no potential for Hydroplaning	
Rollover Transition [Ex 3.0]	Superelevation Transition	L	Sta. or Mile Marker	Northbound	Lane 4	70.0	2.0	2.5	0.02	36.0	DGAC	0.11	52.6	58.0	Fails with Dense Graded Asphalt (DGAC)	
Rollover Transition [Ex 3.1]	Superelevation Mitigation	L	Sta. or Mile Marker	Northbound	Lane 4	70.0	2.0	2.5	0.02	36.0	PCC	0.09	54.6	58.0	Fails with Concrete Pavement (PCC)	
Rollover Transition [Ex 3.2]	Superelevation Mitigation	L	Sta. or Mile Marker	Northbound	Lane 4	70.0	2.0	2.5	0.02	36.0	UTBWC	0.09	55.5	58.0	Shows a high potential for hydroplaning conditions	
Rollover Transition [Ex 3.3]	Superelevation Mitigation	L	Sta. or Mile Marker	Northbound	Lane 4	70.0	2.0	2.5	0.02	36.0	OGFC	0.07	60.3	58.0	Open Graded Friction Course Surface Passes	
Initial Uniform Cross-slope After Rollover Transition [Ex 4.0]	Greater than 36 ft. of Impervious Pavement	L	Sta. or Mile Marker	Northbound	Lane 1	70.0	2.0	2.5	-0.02	24.0	DGAC	0.09	54.2	58.0	Fails when using Dense Graded Asphalt (DGAC)	
Initial Uniform Cross-slope After Rollover Transition [Ex 4.1]	Mitigation	L	Sta. or Mile Marker	Northbound	Lane 1	70.0	2.0	2.5	-0.02	24.0	PCC	0.07	56.1	58.0	Concrete Pavement (PCC) Shows more potential for hydroplaning conditions	
Initial Uniform Cross-slope After Rollover Transition [Ex 4.2]	Mitigation	L	Sta. or Mile Marker	Northbound	Lane 1	70.0	2.0	2.5	-0.02	24.0	UTBWC	0.07	56.7	58.0	Ultra-Thin Bonded Wearing Course Shows low potential for hydroplaning conditions	
Initial Uniform Cross-slope After Rollover Transition [Ex 4.3]	Mitigation	L	Sta. or Mile Marker	Northbound	Lane 1	70.0	2.0	2.5	-0.02	24.0	OGFC	0.06	60.8	58.0	Open Graded Friction Course Surface shows no potential for Hydroplaning	

Contact Us

Questions for the Hydraulics Unit Contact the Unit

Stay in the Flow

Keep up-to-date on the Hydraulics
Unit policies, procedures,
innovations, updates, advertisements,
etc.... by signing up to
receive the Hydraulics Unit
Newsletter. To sign up, just
complete the simple
form @ Hydraulics Unit
Announcement Notifications

