ACEC Erosion Control Design Training 2015 Barney Blackburn, PE, CPESC, CPSWQ NCDOT – Roadside Environmental Unit Soil & Water Engineering Section Supervisor #### New Consultant EC Title Sheet - Consultant Title Sheet Projects - Design Build Projects - REU On-call Contract Projects - Division Design Raleigh Let (DDRL) Projects No DocuSign Requirement Soil & Water will not DocuSign Revise this box to Reviewer Address as needed Prepared in the Office of: Reviewed in the Office of XXXXXX1 South Wilmington St. Raleigh, NC 27611 2012 STANDARD SPECIFICATIONS 2012 STANDARD SPECIFICATIONS Designed by: XXXX XXXXXXXX XXXX Primary NCDOT Erosion Control Reviewer's Name #### Revisions to Basin Details Revised Exterior Basin Slopes from 3:1 to 2:1 Added Rigid Coupling Requirement Decreasing Weir Length to Q/0.8 (from Q/0.4) - Tiered Skimmer Basin - Deleted Slope Drain Pipes between Basins - Revised Upper Basin Depth(s) from 3 ft. to 2 ft. DETERMINE PRIMARY SPILLWAY WEIR LENGTH (FT.) USING Q/0.8 WHERE Q IS FLOW RATE (CFS) INTO BASIN. 6. SOIL STABILIZATION GEOTEXTILE FOR PRIMARY SPILLWAY SHALL BE ONE CONTINUOUS PIECE OF MATERIAL OR OVERLAPPED 18 IN. (MIN.). NOT TO SCALE #### Sediment Basin Guidance Place Sediment Basin at all Feasible Drainage Outlets! - Design Surface Dewatering Basin @ Jurisdictional Outlets - Device with Skimmer - Basin with Skimmer plus Riser - Infiltration - If Sediment Basin not Feasible: - Place Stone Device at Outlet utilizing Sediment Control Stone - Use Flocculant Measures Up Gradient #### Flocculant Device Guidance Place Flocculant Device at Sediment Basin Inlet - Place Flocculant Devices in Ditches that: - Flow to Jurisdictional Resources - Flow to Areas where Surface Area and/or Sediment Storage not achieved - Design Flocculant Measures with Appropriate Spacing in: - Temporary Ditches Carrying Disturbed Area Runoff - Proposed Ditches Carrying Disturbed Area Runoff #### Don't Place Flocculant Devices at: Drainage Outlets Clean Water Diversions Live Streams Wetlands ### Water Quality Evaluation Division of Water Resources Surface Water Classifications http://portal.ncdenr.org/web/wq/ps/csu/classifications Check for Critical Area (CA) Waters Use the Final 2014 303(d) list for Turbidity Impairment http://portal.ncdenr.org/web/wq/ps/csu/swstandards/303d #### ROADSIDE ENVIRONMENTAL UNIT SURFACE WATERS PRESENT WORKSHEET | Buncombe | 13 | 42324.1.1 | B-5167 | | |--|--------------------------------|---|---|--| | County | Div. | WBS # | TIP | | | Broad | | River Basin(s) | | | | Flat Creek | | | | | | 9-12 | | | | | | C; Tr | | | | | | Name(s) of stream(s | or lake(s) | with DWQ index numb | er and classification | | | No High Quality Water (H 303(d) Stream listed for C Trout Water and/or □ Location of zone within 1 mile and draining to TrW to HQW/CA water to 303(d) Coastal County High Qual | inland Co From S From S From S | Related Impacts (Sedimunty HQW and/or Begin Bara. Begin Bara. Begin Bara. | tent and/or Turbidity) CA water(s) Exist Falls Lake Watershed to Sta. to Sta. to Sta. | | | Location of zone within | | | | | | 600' to HQW : | From St | a. | to Sta. | | | * Coastal Counties: Beaufort, Bertie, Brunswick, Camden, Carteret, Chowan, Craven, Currituck, Dare, Gates, Hertford, Hyde, New Hanover, Onslow, Pamlico, Pasquotank, Pender, Perquimans, Tyrrell, and Washington | | | | | | For projects in the following riv | ver basins, l | Riparian Buffer Zones n | eed to be identified: | | | ☐ Neuse River Basin ☐ Tar-Pamlico River Basin ☐ Jordan Lake Watershed | | | | | | ☐ Catawba River (Main Stem) ☐ Randleman Lake Watershed | | | | | | Mark project limits on USGS topographic map(s). | | | | | | Topo map name(s) Bi | ack Mount | ain | | | | | ack Would | am | | | | Mark project limits on USDA (| County Soil | Survey map(s), if availa | able. | | | Soil map sheet number(s) N/A | A | | | | | | | | | | | Filed by: MEH | | Dat | te: <u>5-22-12</u> | | Form ESC-1 MKS 10/17/12 #### **EC Plan Submittal Items** - Water Quality Sheet - Checklist - Matting Spreadsheet - Basin Design Spreadsheet(s) - Quantity Spreadsheet (Complete all Tabs!) - Plans (Hard Copies & PDF) - Microstation Files - Special Provisions (If Design Build) #### EC Design Procedure - 1. Determine Stream Classifications for Water Quality - 2. Place Environmentally Sensitive Area (If applicable) - 3. Choose Design Storm for Basins (10-yr or 25-yr) - 4. Preliminary Sediment Basin Design - 5. Culvert Phasing Design (If applicable) - 6. Coordinate Stilling Basins with Sediment Basins - 7. Design Runoff Conveyances to Sediment Basins - 8. Place Perimeter Sediment Control Measures - 9. Design Upland Erosion Control - 10. Place Plan Sheet Notes # **Culvert Phasing Tips** - Avoid Pumping Effluent across Temporary Channels - Arrange Pipes and Channels for Complete Construction - Wing Walls - Channel Improvements - Don't Show Erosion Control Measures in Phasing - Coordinate with Traffic Control Plans (Temp. Shoring) - Culvert Phasing Presentation #### Pump and Dike Short Duration Process (Max. 5 days!) Use for Pipe Installation Include Pump-Around Detail in the Plans Reference BMP Manual with Note | PROJECT REFERENCE NO
X-XXXX
RW SHEET N | EC-2E | |--|-----------------------| | ROADWAY DESIGN
ENGINEER | HYDRALIDES
ENGINER | #### EXAMPLE OF PUMP-AROUND OPERATION #### NOTE - All excavation shall be performed in only dry or isolated areas of the work zone. - Impervious dikes are to be used to isolate work from stream flow when necessary. - Maintenance of stream flow operations shall be incidental to the work. This includes polyethylene sheeting, diversion pipes, pumps and hoses. - Pumps and hases shall be of sufficient size to dewater the work area. # Phasing Per BMP Manual Note # Stilling Basin Design - Volume (ft³) = Width of Stream Channel (ft.) x (Length of Culvert (ft.) + 20 ft. (10 ft. on Each Side)) x (Depth of Water in Stream (ft.) + Undercut for Bottom of Culvert (ft.)) - Typically used for Volumes > 100 CY (2700 ft³) - Freeboard = 6 inches (Minimum) - Design Permeable Stone Drain to Dewater at a <u>Slow</u> Rate - Add Volume to Required Volume of Sediment Basins # Stilling Basin Volume Design Formula for Stilling Basin Volume: Volume = $$\frac{d}{3} \left[W_{top} L_{top} + W_{base} L_{base} + \left(\frac{W_{top} L_{base} + W_{base} L_{top}}{2} \right) \right]$$ W_{base} L_{base} x 1 ft. - d = 2 5 ft. - Side Slope = 1.5:1 # Stilling Basin Storage TYPICAL SECTION VIEW # Silt Bag Design & Placement Maximum Pumping Rate of 80 gal/min/sf Typically, Volumes less than 100 CY (2700 ft³) Place Inside Perimeter EC Devices Place on Level Ground Locate to Avoid Pumping Across Stream # Stilling & Sediment Basin Design - Example of Stilling Basin as Sediment Basin: - Required Volume for Sediment Basin = 1800 ft³ - Required Volume for Stilling Basin = 1500 ft³ - Provided Volume of Sediment Basin = 2820 ft³ Additional Volume Needed for Sediment Basin = $$1800 + 1500 - 2820 = 480 \text{ ft}^3$$ #### **Temporary Pipe Design & Construction** • Design to 5 times Average Daily Flow (ADF) Common Sizes: 15", 18" and 24" Anchor Ends with Impervious Dikes Used Primarily for Culvert Extensions # Temporary Channel Design • Design to 5 times Average Daily Flow (ADF) Use Maximum of 2:1 Side Slopes Design as Base Ditch Don't Design in Areas of Existing Fill Slopes! #### Common CADD Issues Devices not Rotated Properly Gaps between Perimeter Measures Environmentally Sensitive Area (ESA) Hatching Placement and Clipping of Notes #### **Erosion Control Tool Box** Line Style Shift Auto Text Inlet Protection Labeler Design & Computation Manager #### Keys to D&C Manager Set Project Scale Place Influence Place ☑ in Box beside "New Element Only" #### **EC Quantity Procedure** - 1. Compute Quantities in D&C Manager - 2. Export Quantities to CSV File - 3. Copy/Paste Quantities from CSV file to EC Mapper - 4. Copy/Paste* from Mapper to Quantities Spreadsheet - * Highlight Matching Cell Areas with Dashed Borders #### Design Build Projects Erosion Control in Color Provide Responses to REU Comments Incorporate Previous Comments to Future Submittals Stagger New Submittals (At least after 2nd REU Review) Clip or Move Notes & Labels for Clear Background # EC Design & Construction Manual January 2015 Release Date "Flocculant" Replaces "PAM" Available Electronically (PDF) at: http://www.ncdot.gov/doh/operations/dp_chief_eng/roadside/soil_water/design_construction_manual/ # Questions?