I-540 Westbound Ramp Metering Analysis

NC Department of Transportation Intelligent Transportation Systems Section

March 11, 2014

Notice

This document and its contents have been prepared and are intended solely for the North Carolina Department of Transportation's (NCDOT) information and use in relation to this project.

Atkins assumes no responsibility to any other party in respect to, or arising from, or in connection with this document and/or its contents.

This document has 89 pages including the cover.

Document History

Job number: 100037599			Document Reference: I-540 RM Draft Report v4.docx			
Revision	Purpose description	Originated	Checked	Reviewed	Authorized	Date
Rev 1.0	Draft	HAB	JLH	JLH	HAB	1/30/14
Rev 2.0	NCDOT Submission	HAB	JLH	JLH	HAB	1/30/14
Rev 3.0	NCDOT Comments	HAB	JLH	JLH	HAB	1/30/14
Rev 4.0	Final Submittal	HAB	JLH	JLH	HAB	3/10/14

Client Signoff

Client	NC Department of Transportation
Project	Ramp Metering Analysis, I-540 Westbound
Document Title	Final Report
Job No.	100037599
Copy No.	
Document Reference	I-540 RM Draft Report v4.docx

Table of Contents

Chapter

Pages

Intro	duction	5
1.	Goals	6
2.	Objectives	7
3.	Existing Conditions	8
3.1.	Traffic Counts	8
3.2.	Crash Data	9
3.3.	Geometric Data	9
3.4.	Traffic Signal Timing and Phasing	11
3.5.	Bottleneck Tool Data	11
4.	Analysis of Existing Conditions	13
4.1.	Screening Analysis	13
4.2.	Analysis of Traffic Flow Data	13
4.3.	Crash Data Analysis	16
4.4.	Geometric Analysis	16
4.5.	Ramp Meter Operational Capacities	17
4.6.	Queuing Analysis	19
4.7.	Preliminary Recommendations	22
5.	Cost Estimates	23
6.	Benefits Analysis	25
6.1.	Effectiveness Factor	25
6.2.	Financial Benefits	26
6.3.	Cost-Benefit Analysis	27
6.4.	Five Year and Ten Year Benefit-to-Cost Ratios	28
6.5.	First Year Rate of Return	29
6.6.	Summary	29
7.	Corridor Wide Financial Analysis	30
8.	Conclusions	31

Appendices		32
Appendix A.	Site Summaries	33
Appendix B.	Highway Capacity Analysis Worksheets	62
Appendix C.	Geometric Layouts	71
Appendix D.	Cost Estimates	76

List of Tables

Table 1.	2013 Bottleneck Data Comparison with 2011 Data	12
Table 2.	I-540 Westbound Capacity Analysis Results	14
Table 3.	Ramp Meter Suitability Analysis	15
Table 4.	Summary of Potentially Correctable Crashes	16
Table 5.	Queue Distance	20
Table 6.	Recommended Queue Storage	21
Table 7.	Ramp Meter Improvements	23
Table 8.	Operations and Maintenance Costs	24
Table 10.	Reduction in Vehicles Hours Delayed	27
Table 11.	Financial Benefits Due to Delay Reduction	27
Table 12.	Benefit-Cost Analysis over Five Year Period	28
Table 13.	Benefit-Cost Analysis over Ten Year Period	29

List of Figures

Figure 1.	Measurements of Key Distances in Geometric Analysis	10
Figure 2.	Ramp Meter Suitability Analysis	15
Figure 3.	Ramp Meter Quality of Service and Capacity	19
Figure 4.	Queue Distance	21
Figure 5.	Proposed Improvements – Leesville Road	72
Figure 6.	Proposed Improvements – Creedmoor Road	73
Figure 7.	Proposed Improvements – Six Forks Road	74
Figure 8.	Proposed Improvements – Falls of Neuse Road	75

Introduction

The North Carolina Department of Transportation contracted with Atkins to conduct a more in-depth ramp metering analysis for four locations along I-540 as follow-up to a previous feasibility study conducted by Atkins in 2012 and 2013, *Ramp Metering Feasibility Study for Durham and Wake Counties*. That study used data collected in 2011 and 2012. The North Carolina Department of Transportation is considering these locations to be pilot ramp metering sites in North Carolina. The purpose of this study is to determine if these locations are suitable for ramp metering and if so what improvements are recommended.

This report documents:

- Data Collection
- Traffic Analysis
- Geometric Analysis
- Benefits Analysis
- Financial Analysis

1. Goals

The goal of this project is to conduct a more in-depth follow-up (to the previous study *Ramp Metering Feasibility Study for Durham and Wake Counties*) ramp metering analysis for the following ramps on I-540:

- 1. Site 136*: Leesville Road westbound
- 2. Site 138: Creedmoor Road westbound
- 3. Site 140: Six Forks Road westbound
- 4. Site 142: Falls of the Neuse Road westbound

*site numbers refer to the site number for each site from the previous study

It is understood these locations are candidates for the pilot implementation of ramp metering in North Carolina.

2. Objectives

The objectives of this study are:

- Defining which location(s) is/are good candidate(s), operationally and financially, for ramp metering?
- If so, what specific improvements are needed for a successful implementation?
- For those locations which are not good candidates for ramp metering, documenting clearly why not?

3. Existing Conditions

Data has been summarized in the same manner as the previous study to maintain the consistency of the data and a single regional source for information.

A variety of data was collected at each of the four sites including:

- 24-hour traffic counts in 15 minutes intervals upstream of each of the four ramps in the study
- 24-hour traffic counts in 15 minutes intervals on each of the four ramps in the study
- AM peak hour turning movement counts at the traffic signal at the intersection of each ramp with its respective crossroad.
- Crash data
- Geometric data of the ramps
- Traffic signal timing and phasing
- Travel time runs along I-540 in the AM peak period
- Congestion scan data using the RITIS Vehicle Probe Project web-based tool

3.1. Traffic Counts

In order to assess whether a site is suitable for implementation of ramp metering, it is important to understand traffic volumes on the ramp and on the freeway, both directly upstream and downstream of the merge. In prior work for NCDOT, maximum and minimum volumes were described in the *Ramp Metering Feasibility Study for Durham and Wake Counties - Typical Design Criteria Report*, and are used to determine if the traffic volumes are within acceptable limits for each site during the times of day when congestion is observed.

Results of the 24-hour traffic counts analysis can be found in the Traffic Volumes section of the Site Summaries, and are detailed for each hour between 6:00 AM and 8:00 PM to determine if the volumes are suitable for the operation of ramp metering. For ramp metering to be successful, the hours during which volumes are suitable must correspond with the hours during which congestion is observed. The Site Selection Comments section in the Site Summaries notes these results. The Site Summaries are located in Appendix A. If the volumes on the entrance ramp are too high, the comments also contain information on increasing the number of lanes on the entrance ramp to increase its suitability for ramp metering. All traffic count data for a site was collected during the same periods on the same day to minimize issues with mismatching data. The upstream count of I-540 and its corresponding ramp count were used to derive volume downstream of the ramp merger.

3.2. Crash Data

NCDOT provided three (3) years' worth of crash data (2010–2013) for the mainline in the vicinity of each of the potential ramp metering sites. These data have been analyzed to identify rear-end crashes (slowing or stopping vehicles) and sideswipe crashes where both vehicles are traveling in the same direction. These types of accidents are associated with congestion and are potentially correctible with implementation of ramp metering.

3.3. Geometric Data

A high-level geometric analysis using aerial photography identifies the following characteristics for each of the sites:

- Origin briefly describes the interface between the local road and the entrance ramp
- Number of origins captures the number of entrances onto the main entrance ramp
- Lane addition determines whether there is a lane addition from the entrance ramp onto the freeway
- Length of lane addition records the number of feet on the freeway before the lane addition either diverged or passed the next downstream entrance ramp
- Number of entrance ramp lanes at the back of the nose documents the number of lanes on the ramp in the approximate location where the ramp metering stop bar would be placed
- Lane drop on entrance ramp records whether the number of lanes on the ramp reduces along its length
- Number of freeway lanes upstream of the merge
- Number of freeway lanes downstream of the merge
- Entrance ramp length to the back of the nose records the length of the main section of the ramp up to the approximate location where the ramp metering stop bar would be placed (see Dimension A in Figure 1)
- Entrance ramp length to the tip of the nose records the length of the main section of the ramp to the location where it is possible to merge onto the freeway (see Dimension B in Figure 1)
- Merge length number of feet from where it is possible to begin merging to the point of convergence, i.e., where the merge taper becomes less than the width of a vehicle (see Dimension C in Figure 1)

- Entrance ramp curve records whether the entrance ramp is straight, slightly curved, or tightly curved
- Entrance ramp grade identifies whether the entrance ramp is level, uphill, or downhill
- Entrance ramp shoulder determines whether there is a shoulder, discontinuous shoulder, or no shoulder on the entrance ramp
- Freeway shoulder identifies whether there is a shoulder, discontinuous shoulder, or no shoulder on the entrance ramp
- Observations any noteworthy observations on the ramp layout

The distances measured for entrance ramp lengths from the beginning of the ramp to the back and tip of the gore, and the merge lengths from the tip of the gore to the end of the merge taper, are shown in Figure 1.

Geometric characteristics have been documented and to provide a useful overview of each candidate ramp metering site.

Figure 1. Measurements of Key Distances in Geometric Analysis

Each potential ramp metering site was been visited to gather the following information, summarized in the observations section of the Site Summaries in Appendix C:

- General description of location
- Confirmation of findings from the high-level geometric data analysis above
- Sight line distances

- Ramp gradient
- Pavement condition
- Position of guardrail
- Presence of shoulder or other facility for parking of maintenance/enforcement vehicles
- Potential for altering layouts (e.g., restriping to increase the number of lanes on the entrance ramp)
- Closed-circuit television (CCTV) coverage
- Presence of existing NCDOT fiber-optic communications cable
- Other general observations considered if a ramp meter is proposed for that location

3.4. Traffic Signal Timing and Phasing

The presence of traffic signals at the intersection of the cross street and the entrance ramp have a significant impact on the operation of a ramp meter and vice versa. It is important to know the size of the platoons of traffic released by the upstream traffic signal onto a ramp, especially where ramp volumes are high or the entrance ramp is short. In this study area, protected only left turn phases create significant platoons such that the only traffic not in platoons is the right turn traffic.

Traffic signal information and comments for these sites is included in the Signalization Overview section of the Site Summaries located in Appendix A.

3.5. Bottleneck Tool Data

Bottleneck data from the VPP Suite was collected at the RITIS website (www.ritis.org) administered by the University of Maryland CATT Lab. The VPP suite consists of a number of congestion analysis tools based on probe vehicle data.

3.5.1. Analysis of Bottleneck Data

Three months of historical bottleneck data in the spring and in the fall were downloaded separately for I-540. Neutral time periods (that is, not impacted by significant recurring traffic trends or patterns) were chosen: March 1 to May 31, 2013 and September 1 to November 30, 2013.

The bottleneck ranking application produces a table of identified bottlenecks. Each bottleneck can be selected to display a map and time spiral. The map of the location shows the average maximum length of congestion.

The bottleneck application records/displays all bottlenecks within the sample period, even if the bottleneck is not regular or significant. The downloaded data includes:

- Location of the front of the queue
- Average duration in hours and minutes
- Average maximum length in miles
- Number of occurrences within the sample period

3.5.2. Results

The bottleneck locations coincide with the merge of an entrance ramp, suggesting that the merge could be a source for congestion. Entrance ramps adjacent to the bottleneck and the associated congestion spilling back upstream are considered "congested" and were identified and documented. Screenshots of bottleneck maps and time spirals for each of the significant bottlenecks used to identify "congested" sites and "significant" bottlenecks are located in the Bottleneck Information section of the Site Summaries located in Appendix A.

All locations, except Falls of the Neuse Road, met the threshold requirements for congestion to warrant a ramp meter. Falls of the Neuse Road only had 11 occurrences in the 6 months, which is significantly below the criteria of two occurrences per week. Table 1 below summarizes the results of the bottleneck data.

	Average Length of Congestion (miles)		Duration of Congestion (Min.)		Number of Occurrences		Typical Times of Congestion	
Location	2011	2013	2011	2013	2011	2013	2011	2013
Leesville Road	4.4	7.2	44.0	73.0	14.0	22.0	8:00-9:15 AM	7:45-9:15 AM
Creedmoor Road	1.5	3.9	24.5	51.5	20.5	43.5	8:00-9:00 AM	7:30-9:30 AM
Six Forks Road	1.6	2.8	20.0	31.0	10.5	8.5	8:00-9:00 AM	7:30-9:00 AM
Falls of the Neuse Road	1.1	0.7	15.0	24.5	7.5	5.5	7:30-8:30 AM *	N/A

Table 1. 2013 Bottleneck Data Comparison with 2011 Data

4. Analysis of Existing Conditions

4.1. Screening Analysis

4.1.1. Site Characteristics

The sites were checked to ensure the congestion is not attributable to influences other than traffic volumes. These potential influences could be road and lane closures, or construction projects. A site could also be upstream of another candidate site whereby the downstream site could be the primary source of congestion.

4.1.1.1. Site Subject to Congestion from Lane Closures for a Roadway Project

For this project, there were no construction or lane closures during the study period. Since the field data collection ended, NCDOT has started reconstruction on I-440. NCDOT expects there will be traffic diversions from I-440 to I-540 due to lane closures. Atkins collected the traffic counts in 2013 prior to the I-440 project starting construction. The travel time runs were collected after the I-440 lane closures began. Therefore, additional traffic counts were collected on I-540 from NCDOT's permanent microwave radar detectors to assess if traffic diversion may be occurring that could contribute to increased congestion.

4.1.1.2. Site Upstream of a Primary Site

A primary source of congestion occurs when the congestion begins at a downstream site and extends upstream into another or secondary site. If ramp metering were implemented at the upstream or secondary site the full benefit for improvements in congestion would not be realized until the primary source of congestion was addressed.

For this project, the Leesville Road ramp serves as the primary source of congestion for the Creedmoor Road ramp in the fall but not in the spring of 2013. The Creedmoor Road ramp also serves as the primary source of congestion for the Six Forks Road ramp for both the spring and fall 2013 data.

4.2. Analysis of Traffic Flow Data

4.2.1. Capacity Analysis

An operational analysis of the existing conditions was performed for the four on-ramp locations along westbound I-540 identified as potential sites for ramp metering. The on-ramps were analyzed for the AM peak hour, which is the peak direction of travel. The analysis was performed using the ramps module for merge junctions of 2010 Highway

Capacity Software (HCS), which is based on methodologies from the 2010 Highway Capacity Manual (HCM).

Traffic volumes used in the analysis of the merge junctions were developed from 24-hour traffic counts collected in December 2013. The 15-minute intervals were aggregated into hourly volumes, from which the AM peak hour volume was identified. The peak hour factor (PHF) was calculated using the highest 15-minute volume of the peak hour volume.

The HCS analysis showed that three of the four of the sites operate at LOS D or better during the AM peak hours. The analysis results are shown below in Table 2. The HCS analysis worksheets are contained in Appendix B.

	Peak Hour Volume		Level-of-	Density
Location	Upstream Freeway	On-Ramp	Service	(pc/mi/ln)
Leesville Road	5,881	1,429	F	37.7
Creedmoor Road	5,412	963	D	33.5
Six Forks Road	5,096	976	В	19.5
Falls of the Neuse Road	4,230	1,520	D	34.1

Table 2. I-540 Westbound Capacity Analysis Results

4.2.2. Ramp Meter Suitability Analysis

A ramp meter suitability analysis examines if the right traffic characteristics exist that are favorable to ramp metering. This analysis employs two sets of criteria, one for ideal conditions and the other for acceptable conditions. This analysis compares the 24-hour traffic counts on the ramp to those on I-540. Figure 2 shows the relationship to the criteria described below.

The ideal conditions are met if:

- 400 vph/lane <= ramp volume < 900 vph/lane, and
- 10% < ramp volume/I-540 downstream volume x 100% < 30%, and
- I-540 downstream volume > 1,500 vph/lane.

The acceptable conditions are met if:

- 300 vph/lane <= ramp volume < 1,200 vph/lane, and
- 5% < ramp volume/I-540 downstream volume x 100% < 50%.

Figure 2. Ramp Meter Suitability Analysis

Based upon the traffic counts, the results are shown in Table 3 below. The details for each ramp can be found in the Traffic Volumes section of the Site Summaries

	Hours Meeting Criteria		
Location	Ideal	Acceptable	
Leesville Road	7:15-8:45 AM	6:15-9:15 AM	
Creedmoor Road	7:15-9:00 AM	6:30-9:00 AM	
Six Forks Road	6:45-8:15 AM	6:30-9:00 AM	
Falls of the Neuse Road	6:30-8:15 AM	6:00-6:30 AM	

Table 3. Ramp Meter Suitability Analysis

4.3. Crash Data Analysis

The results of three years of crash data are expressed as a number and a percentage of overall accidents at each location, and can be found in the Crash Data section of the Site Summaries located in Appendix A. The results can be found in Table 4 below.

	Crashes			
Location	All Crashes	Type 21	Type 28	
Leesville Road	14	6	1	
Creedmoor Road	8	4	3	
Six Forks Road	5	2	3	
Falls of the Neuse Road	23	9	1	

 Table 4. Summary of Potentially Correctable Crashes

Notes

1. Type 21 is rear end while slowing or stopped.

2. Type 28 is a sideswipe in the same direction.

4.4. Geometric Analysis

The analysis performed examined the following:

- Any significant physical issues that may exist at each potential ramp metering location such as:
 - Pavement width if the ramp metering deployment requires two lanes
 - Adequate acceleration distance
 - Pavement conditions
 - Sight distance issues
 - Physical constraints if ramp widening is needed
- Whether these issues can be rectified
- Other useful factors that influence the site's suitability for ramp metering

4.4.1. Site 136: Leesville Road

Pavement condition is adequate to support inductive loops for a ramp meter. The existing guardrail is not a constraint for a single or dual lane ramp meter. No drainage facilities are in conflict. There are two merge warning signs that might need relocation or adjustment.

If the ramp meter is two lanes, its location may require some widening for the merge area of the ramp meter lanes.

4.4.2. Site 138: Creedmoor Road

Pavement condition is good enough to support inductive loops for a ramp meter. There is no existing guardrail. No drainage facilities are in conflict. There are four merge warning signs that might need relocation or adjustment.

If the ramp meter is two lanes, its location may require some widening for the merge area of the ramp meter lanes.

4.4.3. Site 140: Six Forks Road

Pavement condition is good enough to support inductive loops for a ramp meter. The existing guardrail is not a constraint for a single or dual lane ramp meter. No drainage facilities are in conflict. There are one merge warning sign that might need relocation or adjustment.

The two-lane ramp is long enough not to require widening to accommodate a dual lane ramp.

4.4.4. Site 142: Falls of the Neuse Road

Pavement condition is good enough to support inductive loops for a ramp meter. The existing guardrail on the right side is not a constraint for a single or dual lane ramp meter. No drainage facilities are in conflict. There are three merge warning signs that might need relocation or adjustment.

If the ramp meter is two lanes, its location may require more widening for the merge area of the ramp meter lanes than the other sites due to the much shorter two-lane section.

4.5. Ramp Meter Operational Capacities

There are various ramp meter strategies that can provide capacities to meet the expected demand. These strategies are:

4.5.1. One Vehicle per Green (Single Lane)

In this configuration, the ramp meter operates with one vehicle per green interval with one car merging at a time. The maximum capacity observed is 900 veh/hr. The corresponding cycle length at 900 vph would be 4 seconds. The shortest reasonable length cycle is around 4.5 seconds, which includes 2 seconds of green and 2.5 seconds of all-red. This reduces the capacity to 800 vph.

4.5.2. Multiple Vehicles per Green (Single Lane)

In this configuration, the ramp meter usually operates with two vehicles per green interval and in some case three vehicles per green interval. Additional signage is required to advise drivers of the restrictions. The additional capacity gained from a two-vehicle per green operation is 200-400 vph, therefore the capacity would be in the range of 1,100 to 1,200 vph. The corresponding cycle length is longer since it requires additional green or extension time to clear the second cycle. Typical cycle lengths are 6 to 6.5 seconds.

4.5.3. Two Lane Ramp Meter

In this configuration, two-lane ramp meters provide twice the queuing distance. Two-lane ramp meters typically release one vehicle per lane per green interval. Some states stagger each lane's release to smooth the merger. In some cases, two vehicles per lane per green are permitted in very high volumes. Typical capacities are 1600-1700 vehicles per approach. Typical cycle lengths are 6 to 6.5 seconds.

4.5.4. Conclusions

Texas A&M Transportation Institute's research concludes:

- Single lane ramps operate with a good quality of service at volumes less than 1,200 vph. A good quality of service is when metering availability is greater than 80%.
- A single lane ramp meter will likely have a fair quality of service with volumes between 1,200 and 1,400 vph.
- It is desirable to use two-lane ramp meters when demand exceeds 1,200 vph.
- Single lane ramp meters are not encouraged for demand greater than 1,400 vph.
- Two-lane ramp meters have a maximum capacity of approximately 1,650 vph.

Ramp meter availability is the fraction of time when the ramp meter volume exceeds the meter's capacity. It is measure of the meter's reliability to operate and regulate traffic in high volume conditions.

The above information is depicted in Figure 3 and shows the relationship of volume, capacity and the resultant quality of service. From this graph, it can be seen the project sites would operate as:

<u>Leesville Road</u> – Based upon the turning movement counts between 7-8 AM, the demand is 1,427 vph with 43% turning left from Leesville Road. Based upon the above guidance, a two-lane ramp meter should operate with a good quality of service.

<u>Creedmoor Road</u> – Based upon the turning movement counts between 7-8 AM, the demand is 960 vph with 70% turning left from Creedmoor Road. Based upon the above guidance, a two-lane ramp meter should operate with a good quality of service.

<u>Six Forks Road</u> – The peak hour ramp volume is 1,100 vph with 55% turning left from Six Forks Rd. Since this ramp is already two lanes wide, a two-lane ramp meter should operate with a good quality of service.

<u>Falls of Neuse Road</u> – The peak hour volume of 1,279 vph has 80% turning right from Falls of the Neuse Road. A two-lane ramp meter should operate with a good quality of service.

Figure 3. Ramp Meter Quality of Service and Capacity

4.6. Queuing Analysis

Using research developed by TTI, queuing can be estimated using the equation for the 95 percentile for the above ramp meter strategies.

L = 3.2808 x (.250V-.00007422V2) L = Required storage in ft.

V = Demand volume in vph

This equation can be summarized in Figure 4 and Table 5. Note that bulk metering is defined as either two or three cars per green.

	Storage Length (ft.)			
Volume	One Lane	Two Lane		
800	501	250.5		
900	541	270.5		
1000	577	288.5		
1100	608	304		
1200	634	317		
1300	655	327.5		
1400	672	336		
1500	683	341.5		
1600	689	344.5		

I able 5. Queue Distance	Table	5.	Queue	Distance
--------------------------	-------	----	-------	----------

From the above equation, the queue storage requirements are summarized in Table 6 below:

	Demand Volume	Queue Sto	orage (ft.)
Location	(vph)	Single Lane	Two Lane
Leesville Road	1,427	675	462
Creedmoor Road	960	563	338
Six Forks Road	1,100	N/A	378
Falls of the Neuse Road	1,279	651	425

 Table 6. Recommended Queue Storage

4.7. Preliminary Recommendations

From *only* the traffic and geometric analysis, and without regard to financial analysis, the following preliminary recommendations appear reasonable:

- Leesville Road (see Figure 5 in Appendix C for geometric layout)
 - Extend the existing two-lane ramp section west approximately 130' with 720' merge taper. This will provide at least 750' of storage.
 - o Install two-lane ramp meter
- Creedmoor Road (see Figure 6 in Appendix C for geometric layout)
 - Extend the existing two-lane ramp section west approximately 125' with 720' merge taper. This will provide at least 650' of storage.
 - o Install two-lane ramp meter
- Six Forks Road (see Figure 7 in Appendix C for geometric layout)
 - Install two-lane ramp meter on existing two-lane ramp. This will provide at least 550' of storage.
- Falls of Neuse Road (see Figure 8 in Appendix C for geometric layout)
 - This ramp does not have sufficient congestion to justify improvements. If any ramp-meter specific improvements are made, they would include a twolane ramp meter with 315' extension of the two-lane ramp section to locate the ramp meter is the ideal location for acceleration onto I-540. Construct a 720' merge taper.

5. Cost Estimates

With the exception of Falls of the Neuse Road, all the sites analyzed have significant recurring congestion as defined in the use of the RITIS bottleneck tool. Atkins reviewed their geometric characteristics and analyzed traffic volumes to confirm their suitability for ramp metering. After identifying that ramp metering will likely be effective at three of these sites, the next stage of the process is to estimate the construction costs associated with improvements that will satisfy the traffic conditions.

The cost estimates were using design criteria and planning level cost estimate templates developed in the *Ramp Metering Feasibility Study for Durham and Wake Counties.* Table 7 below summarizes the specific improvements and associated capital costs.

Program costs (procurement and integration of the control software and the controller firmware) and training separate costs. Operations and maintenance costs have been estimated using information from other states.

	Ramp Meter			
Location	Configuration	Roadway Improvement	Ca	pital Cost
		Extend two-lane ramp 130'		
Leesville Road	Two-lane	with 720' merge taper	\$	238,240
		Extend two-lane ramp 125'		
Creedmoor Road	Two-lane	with 720' merge taper	\$	214,364
Six Forks Road	Two-lane	None	\$	135,632
		Extend two-lane ramp 315'		
Falls of the Neuse Road	Two-lane	with 720' merge taper	\$	241,934
Total			\$	830,170

Table 7. Ramp Meter Improvements

Detailed cost estimates for each site are included in Appendix D. These estimates include site-specific costs for:

- Geometric construction including:
 - o Pavement widening
 - Pavement resurfacing
 - o Earthwork
 - o Guardrail and
 - o Drainage where applicable
 - Signal displays and supports
- Detection

- Controllers
- Signing
- Pavement markings
- Traffic control
- Contingencies

The operations costs in Table 8 are estimates as follows using data from the *Ramp Metering Feasibility Study for Durham and Wake Counties.* These are the estimated costs beyond the initial startup and after the system has been accepted.

	Ramp Meter	Annual Costs		
Location	Configuration		O&M	
Leesville Road	Two-lane	\$	7,491	
Creedmoor Road	Two-lane	\$	7,491	
Six Forks Road	Two-lane	\$	7,491	
Falls of the Neuse Road	Two-lane	\$	7,491	
Total		\$	29,964	

Table 8. Operations and Maintenance Costs

6. Benefits Analysis

After identifying that ramp metering will likely be effective at three of these sites, the next stage of the process is to determine whether ramp metering will provide sufficient benefits to make installation financially viable.

6.1. Effectiveness Factor

In order to be conservative in the level of benefits claimed, Atkins used an effectiveness factor. All sites were reviewed to identify an "Effectiveness Factor", which is the ratio of the "Expected Delay Reduction" they would be expected to achieve. Experience in the implementation and calibration of ramp metering has found that some sites are riskier in that they might not operate optimally for the following specific reasons:

- They are a "secondary" site within the congestion, meaning that there is another downstream "primary" site that is the main cause of the bottleneck. If the primary site cannot be metered, then the secondary site does not have as much effect in alleviating the congestion because it is not the principal cause. The secondary site can only assist in congestion management once congestion from the downstream site has tailed back, and once the congestion is recovering. Therefore, an effectiveness factor of 50 percent is applied (it is estimated that the site will be effective for approximately 50 percent of the congested period).
- The site may have a short on-ramp, which means that the storage capacity for vehicles is low and, in turn, the site will operate in "queue management mode" for significant periods during congestion. Optimal operation is to reduce vehicles leaving the on-ramp during the worst congestion to help the main freeway. Queue management mode must allow more vehicles out of the on-ramp to avoid the queue spilling back onto the surface streets. Because there is a risk that the system will run sub-optimally as a result of limited storage, an effectiveness factor of between 50 and 75 percent is applied.
- Some sites meet the on-ramp flow thresholds to be suitable just for ramp metering implementation, but not for the entirety of the congested period. Ramp metering works partly by restricting flow from the on-ramp onto the main freeway, so low on-ramp flows could limit the system's ability to do this (if the flow is already low it cannot be reduced further). Where flows are outside of the recommended thresholds for a period of time during the congested period, the effectiveness factor can be adjusted to tailor the expected level of benefit proportionally. Where flows are very close to the threshold, an experienced ramp metering calibration engineer can determine how to slightly reduce the effectiveness factor, accounting for the fact that the site may occasionally run sub-optimally.

Sites with a lower effectiveness factor are shown in Table 9, with their respective reasons. For each site, the expected delay reductions have been calculated by multiplying the Expected Delay Reduction and the Effectiveness Factor.

		Effectiv	
		eness	
Freeway	Cross Street	Factor	Reason
I-540	SR 1829 -	0.75	This location is the primary cause of congestion but
	Leesville Rd		relative to high traffic volumes on ramps the storage is
			limited. This site is only effective during the first part of
			the build-up to congestion and the last part of the
			recovery of congestion; therefore, the effectiveness
			factor has been reduced by 25%.
I-540	Creedmoor Road	0.75	This location is the primary cause of congestion but
			relative to high traffic volumes on ramps the storage is
			limited. This site is only effective during the first part of
			the build-up to congestion and the last part of the
			recovery of congestion; therefore, the effectiveness
			factor has been reduced by 25%.
I-540	Six Forks Road	0.75	This site is secondary to those downstream but has a
			better ratio of volume to storage.
I-540	Falls of Neuse	0.5	Bottleneck Tool indicates there is not sufficient
	Road		congestion for ramp metering

Table 9. Justification for Lower Effectiveness Factors

6.2. Financial Benefits

From the *Ramp Metering Feasibility Study for Durham and Wake Counties,* it was agreed an appropriate value of time due to delay should be \$22 per hour. This rate is based on Texas Transportation Institute's (TTI) 2011 Urban Mobility Report. In that report, the monetary delay per person was calculated as \$16.81 per hour. That rate can be converted by applying an average vehicle occupancy rate of 1.3, which rounds to \$22 per hour. This value converts the expected reduction in passenger vehicle delay into financial terms. The same TTI report estimated the average cost of delay per truck for all types of commercial vehicles to be \$88.12 per hour.

From historical traffic classification counts, the weighted delay per vehicle was calculated:

Weighted Delay per Vehicle = .90 x \$22.00 + .10 x \$88.12

= \$28.61 per hour

The results are presented per site showing reduction in delay and monetary benefit for the low, medium, and high projections.

The reduction in delay at each site is shown in Table 10. The monetary value of the reduction in delay at each of the sites is shown in Table 11.

				Annual Reduction in Delay (veh-hrs)			
			Effective- ness	- 10% 15% 20% Delay Delay Dela			
Freeway	Cross Street	Dir.	Factor	Reduction	Reduction	Reduction	
I-540	Leesville Rd	WB	0.75	3,630	5,445	7,260	
I-540	Creedmoor Road	WB	0.75	3,139	4,708	6,278	
I-540	Six Forks Road	WB	0.75	436	654	871	
I-540	Falls of Neuse Road	WB	0.50	63	94	125	

Table 10. Re	duction in Ve	ehicles Hours	Delayed
--------------	---------------	---------------	---------

			Annual Reduction in Delay (veh-hrs)				Annı	ial I	Financial I	Bene	efit
Freeway	Cross Street	Dir.	@10% @15% @20%			10 Re	10% Delay15% DelaReductionReductio			y 20% Delay n Reduction	
I-540	Leesville Rd	WB	3,630	5,445	7,260	\$	77,889	\$	116,833	\$	155,777
I-540	Creedmoor Road	WB	3,139	4,708	6,278	\$	67,351	\$	101,026	\$	134,702
I-540	Six Forks Road	WB	436	654	871	\$	9,349	\$	14,024	\$	18,698
I-540	Falls of Neuse Road	WB	63	94	125	\$	895	\$	1,343	\$	1,791

6.3. Cost-Benefit Analysis

Cost-benefit ratios have been calculated for each of the four ramp metering sites annually for 5 and 10 horizon years. This analysis uses the estimated capital costs described in Section 5, Estimated Costs, and the estimated delay benefits based on a 20 percent savings in delay.

The purpose of this analysis is to allow comparison of the relative economic conditions of each site. Therefore, only the costs directly associated with each individual site have been included (i.e., implementation cost and annual cost)

A benefit-cost ratio analysis is an established method to compare the cumulative benefits versus cumulative costs. If that ratio is greater than 1.0, then the project has positive net benefits over the analysis period. For purposes of this analysis, the program cost of \$404,998 includes all the central software, training, integration, and hardware. This cost was developed in the *Ramp Metering Feasibility Study for Durham and Wake Counties.*

Benefit Cost Ratio = Cumulative Benefits / (Capital Cost Cumulative + Annual Cost + Prorated Share of Program Costs)

6.4. Five Year and Ten Year Benefit-to-Cost Ratios

The period of time used for economic analysis normally is the period of the useful life of the assets included for the alternatives under determines if additional sites will be financially feasible in the second 5 years, if they were not in the first 5 years. This gives the opportunity to review the site after 10 years and decide if the investment is worthwhile to continue.

A second analysis period of 5 years has been used. This conforms to NCDOT normal practice for calculating benefit-cost of this type of project. If a site "pays back" within 5 years, then it should also be economically suitable for implementation.

The difference between the five and ten year costs is the additional 5 years of annual maintenance costs and the additional 5 years of benefits.

6.4.1. Five Year Benefit-Cost Results

Table 12 shows the expected cost and benefit of each site for 5 years. This analysis shows that only the proposed Leesville Road and Creedmoor Road improvements are financially viable in the first five years.

								Five-	
						Five-Year	Five-Year	Year	
Free-			Annual	Implementation	Annual	Total	Total	B/C	
way	Cross Street	Direction	Benefits	Cost	Cost	Cost	Benefit	Ratio	FYRR
I-540	Leesville Rd	WB	\$142,317	\$238,240	\$7,491	\$275,695	\$711,585	2.58	-42%
I-540	Creedmoor Road	WB	\$116,365	\$214,364	\$7,491	\$251,819	\$581,824	2.31	-48%
I-540	Six Forks Road	WB	\$16,950	\$135,632	\$7,491	\$173,087	\$84,748	0.49	-88%
I-540	Falls of Neuse Road	WB	\$1,624	\$241,934	\$7,491	\$279,389	\$8,118	0.03	-99%

 Table 12.
 Benefit-Cost Analysis over Five Year Period

6.4.2. Ten Year Benefit-Cost Results

Table 13 shows the expected cost and benefit of each site for 10 years. This analysis shows that only the proposed Leesville Road and Creedmoor Road improvements are still financially viable in ten years.

						Ten Year			
Free-			Annual	Implementation	Annual		Total	B/C	
way	Cross Street	Direction	Benefits	Cost	Cost	Total Cost	Benefit	Ratio	FYRR
I-540	Leesville Rd	WB	\$142,317	\$238,240	\$7,491	\$313,150	\$1,423,169	4.545	-42%
I-540	Creedmoor Road	WB	\$116,365	\$214,364	\$7,491	\$289,274	\$1,163,649	4.023	-48%
I-540	Six Forks Road	WB	\$16,950	\$135,632	\$7,491	\$210,542	\$169,496	0.805	-88%
I-540	Falls of Neuse Road	WB	\$1,624	\$241,934	\$7,491	\$316,844	\$16,235	0.051	-99%

6.5. First Year Rate of Return

The first year rate of return is a calculation that determines if a proposed project has sufficient benefits in the first year to offset the cost of implementation plus one year's operation. No location meets this criteria.

6.6. Summary

Based upon the financial analysis the proposed Leesville Road and Creedmoor Road are financially feasible in both the five and ten-year analysis periods.

7. Corridor Wide Financial Analysis

As system improvement the four sites were grouped together to determine if they collectively meet the financial cost criteria. For a ten-year period with 20% reduction in delay,

Combined Implementation Costs:	\$ 830,170
Combined Annual Costs:	\$ 29,964
Total Costs:	\$ 1,129,810
Effectiveness Factor:	1.0
Combined Annual Reduction in Delay (veh-hours):	14,534
Combined Benefits:	\$ 2,772,549
Corridor B/C ratio:	2.454

The benefits due to delay reduction at Leesville Road and Creedmoor Road more than offset the lower benefits for Six Forks Road and Falls of Neuse Road.

Another consideration if less than all four sites are constructed there may be the potential for diversion from a metered location to an unmetered location. In particular, if Falls of Neuse Road is not constructed the potential diversion from Six Forks Road via Durant Road and Strickland Road eastward to Falls of Neuse Road is a reasonable outcome to expect.

8. Conclusions

Based upon the geometric and traffic needs and the corridor-wide financial analysis, the following improvements are recommended:

- Leesville Road
 - Extend the existing two-lane ramp section west approximately 130' with 720' merge taper. This will provide at least 750' of storage.
 - Install a two-lane ramp meter
- Creedmoor Road
 - Extend the existing two-lane ramp section west approximately 125' with 720' merge taper. This will provide at least 650' of storage.
 - o Install a two-lane ramp meter
- Six Forks Road
 - Install two-lane ramp meter on existing two-lane ramp. This will provide at least 550' of storage.
 - No geometric improvements are needed to provide a two-lane ramp meter.
- Falls of Neuse Road
 - Extend the existing two-lane ramp section west approximately 315' with 720' merge taper. This will provide at least 725' of storage.
 - o Install a two-lane ramp meter

The results of this study show that two proposed improvements are justified and financially feasible without benefit cost ratios greater than 1.0. These proposed improvements are:

- Leesville Road
- Creedmoor Road

Two additional proposed ramp metering improvements at Six Forks Road and at Falls of Neuse Road are justified based upon traffic and geometric needs, but are not financially feasible since their benefits, due to associated delay reductions, are less than the cost of the improvement over both a five and ten year study period.

While the analysis has focused on reduction in delays (vehicle hours), there will be other subjective and more minor quantitative benefits as a result of ramp metering installation, including more reliable trips, reduction in fuel consumption, reduction in vehicle emissions, and reduction in crashes.

Appendices

Appendix A. Site Summaries

NCDOT I-540 Westbound Ramp Metering Study

136

Site Summary Document

Site Details

Site Number	136	
Freeway	I-540	
Cross Street	Leesville Rd	The states and the
Exit	279	
Direction	Westbound	13,9209,136
County	Wake	

Physical Characteristics Overview

Origin of Ramp	Signalized Int. w/ right turn yield
Lane Addition onto Main Freeway length (ft)	None
Number of Entrance Ramp Lanes	2 (one left and one right)
Lane Drop on Entrance Ramp Before Merge	Yes
Number of Freeway Lanes Before Merge	3
Number of Freeway Lanes After Merge	3
Entrance Ramp Length to Back of Gore (ft)	1200
Entrance Ramp Length to Tip of Gore (ft)	1510
Merge Length (ft)	1250
Entrance Ramp Horizontal Alignment	Slight Curve
Entrance Ramp Vertical Alignment	-2%
Entrance Ramp Shoulder (Paved Full Width)	Lt-4', Rt-4'
Main Freeway Vertical Alignment Downstream	Level
Main Freeway Shoulder	Yes
Number of Vehicles Storage	70
Guardrail	Partial along right side of ramp
Pipe Crossing	None present

Signalization Overview

Upstream Signal	Three phase, 3-way signal with right turn yield onto ramp.		
	Left turn phasing is protected only.		
Signal Timing	Protected NBL, yield SBR onto ramp.		
Nearest Power Source	Signal		

Signing Overview

Existing Signing	No issue.
------------------	-----------

Traffic Volumes

Data collected on 12/03/2013.

Period Beginning	Upstream Hourly Flow Rate	Downstream Hourly Flow Rate	On-Ramp Hourly Flow Rate	Downstream Flow per Lane	On-Ramp Flow per Lane	On-Ramp % of Downstream	Hour Meets Ideal Criteria for Ramp Metering	Hour Meets Acceptable Criteria for Ramp Metering
0:00	144	159	15	53	15	9	No	No
1:00	96	109	13	36	13	12	No	No
2:00	94	98	4	33	4	4	No	No
3:00	194	203	9	68	9	4	No	No
4:00	353	390	37	130	37	9	No	No
5:00	986	1120	134	373	134	12	No	No
6:00	3113	3591	478	1197	478	13	No	Yes
7:00	5697	6922	1225	2307	1225	18	No	No
8:00	5469	6765	1296	2255	1296	19	No	No
9:00	3408	3991	583	1330	583	15	No	Yes
10:00	2161	2496	335	832	335	13	No	Yes
11:00	1867	2175	308	725	308	14	No	Yes
12:00	1648	2006	358	669	358	18	No	Yes
13:00	1849	2172	323	724	323	15	No	Yes
14:00	1804	2107	303	702	303	14	No	Yes
15:00	1983	2330	347	777	347	15	No	Yes
16:00	2371	2754	383	918	383	14	No	Yes
17:00	3191	3516	325	1172	325	9	No	Yes
18:00	2282	2615	333	872	333	13	No	Yes
19:00	1288	1506	218	502	218	14	No	No
20:00	995	1156	161	385	161	14	No	No
21:00	718	825	107	275	107	13	No	No
22:00	483	543	60	181	60	11	No	No
23:00	275	312	37	104	37	12	No	No
Turning Movement Counts

	Leesville Rd						Leesville Rd				I-540 WB Ramps					
		N	orthbo	ound		Southbound				Westbound						
Start Time	Left	Thru	Rgt	Peds	App. Total	Left	Thru	Rgt	Peds	App. Total	Left	Thru	Rgt	Peds	App. Total	Int. Total
6:15 AM	54	16	0	0	70	0	92	51	0	143	29	0	18	0	47	260
6:30 AM	75	43	0	0	118	0	144	78	0	222	61	0	11	0	72	412
6:45 AM	67	48	0	0	115	0	297	94	0	391	99	1	24	0	124	630
7:00 AM	90	83	0	0	173	0	258	110	0	368	83	0	24	0	107	648
Total	286	190	0	0	476	0	791	333	0	1124	272	1	77	0	350	1950
7:15 AM	126	147	0	0	273	0	262	183	0	445	81	1	38	0	120	838
7:30 AM	150	152	0	0	302	0	293	205	0	498	79	0	47	0	126	926
7:45 AM	160	137	0	0	297	0	336	195	0	531	54	0	37	0	91	919
8:00 AM	172	136	0	0	308	0	329	236	0	565	56	0	25	0	81	954
Total	608	572	0	0	1180	0	1220	819	0	2039	270	1	147	0	418	3637

*Traffic Volume hourly counts begin on the hour (0:00); Turning Movement hourly totals begin on the quarter hour (0:15).

Ramp Merge Capacity

The on-ramps were analyzed for the AM peak hour, which is the peak direction of travel. The analysis was performed using the ramps module for merge junctions of the 2010 Highway Capacity Software (HCS), which is based on methodologies from the 2010 Highway Capacity Manual (HCM).

Traffic volumes used in the analysis of the merge junctions were developed from 24-hour traffic counts collected in December 2013. The 15-minute intervals were aggregated into hourly volumes, from which the AM peak hour volume was identified. The peak hour factor (PHF) was calculated using the highest 15-minute volume of the peak hour volume.

	Peak Hour	Volume	Level- Of-			
Description	Upstream Freeway	On- Ramp	Service (LOS)	Density (pc/mi/ln)		
I-540 Westbound On-Ramp @ Leesville Rd	5,881	1,429	F	37.7		

Congestion

Congestion data was collected from the RITIS Vehicle Probe Project using Inrix data. Bottleneck occurrences are identified when the speed falls below 60% of the reference speed (85th percentile speed for all time periods) for greater than 5 minutes. Additional threshold criteria applied to identify bottleneck congestion that would benefit from ramp metering includes durations lasting 30 minutes and average maximum length of congestion greater than ½ mile and occurring at least twice a week (26 occurrences over the 3-month period).

	Spring 2011	Spring 2013
Ave Length of Congestion (Miles)	5.02	6.75
Duration of Congestion (Min)	47	72
Number of Occurrences	12	18
Typical Times of Congestion	08:00-09:00	07:45-09:15

	Fall 2011	Fall 2013
Ave Length of Congestion (Miles)	3.70	7.59
Duration of Congestion (Min)	41	74
Number of Occurrences	16	26
Typical Times of Congestion	08:00-09:30	07:45-09:15

Crash Data

The total number of accidents from November 2010 through October 2013 was: 14 Of these 7 were accidents which can be associated with congestion: Type 21-Rear end, slow or stop: 6 (43%) Type 28- Sideswipe, same direction: 1 (7%)

Observations

Log 136 is a direct ramp with no sight distance issues. There is a very slight downhill grade. There is CCTV coverage of the merge area of the ramp with the mainline but trees block most of the CCTV coverage of the ramp. The ramp has large easement space but no designated pull-off area.

Long queues starting around 7:30 AM and ending around 8:30 were observed on Leesville Rd for the southbound right and northbound left turns onto the ramp. Northbound left turn traffic queued up through the upstream signal at the eastbound ramps. Southbound right turn traffic queued 500 feet upstream of the signal.

Right and left turn traffic were able to merge on the ramp without affecting the traffic signal operation. In the highest 15-minute intervals, the traffic merging onto I-540 forced traffic on I-540 westbound to slow down and created some unstable traffic flow on I-540.

Site Selection Comments

Single lane ramp with high left turn volume could pose problems for ramp meter implementation. May require dual lane ramp meter.

NCDOT Ramp Metering Feasibility Study

138

Site Summary Document

Site Details

Site Number	138	The second second
Freeway	I-540	13.9209.138
Cross Street	Creedmoor Rd	
Exit	9	The second second
Direction	Westbound	The state of the state
County	Wake	

Physical Characteristics Overview

Origin of Ramp	Signalized Int. w/ right turn free
Lane Addition onto Main Freeway length (ft)	None
Number of Entrance Ramp Lanes	2 (Two left). Right turn is yield
	controlled without full lane
	acceleration.
Lane Drop on Entrance Ramp Before Merge	Yes
Number of Freeway Lanes Before Merge	3
Number of Freeway Lanes After Merge	3
Entrance Ramp Length to Back of Gore (ft)	971
Entrance Ramp Length to Tip of Gore (ft)	1450
Merge Length (ft)	1100
Entrance Ramp Horizontal Alignment	Straight
Entrance Ramp Vertical Alignment	+2.5%
Entrance Ramp Shoulder (Paved Full Width)	Lt-4', Rt-4'
Main Freeway Vertical Alignment Downstream	Level
Main Freeway Shoulder	Left- 12', Right- 4'
Number of Vehicles Storage	60
Guardrail	None present
Pipe Crossing	None present

Signalization Overview

Upstream Signal	Three phase, 3-way signal with free right turn onto ramp.
	Left turn phasing is protected only.
Signal Timing	Protected NBL, yield SBR onto ramp.
Nearest Power Source	Signal

Signing Overview

Existing Signing No.	lo issue.

Traffic Volumes

Data collected on 12/03/2013.

Period Beginning	Upstream Hourly Flow Rate	Downstream Hourly Flow Rate	On-Ramp Hourly Flow Rate	Downstream Flow per Lane	On-Ramp Flow per Lane	On-Ramp % of DS	Hour Meets Ideal Criteria for Ramp Metering	Hour Meets Acceptable Criteria for Ramp Metering
0:00	158	172	14	57	14	8	No	No
1:00	103	113	10	38	10	9	No	No
2:00	103	112	9	37	9	8	No	No
3:00	203	217	14	72	14	6	No	No
4:00	337	386	49	129	49	13	No	No
5:00	1009	1153	144	384	144	12	No	No
6:00	3056	3555	499	1185	499	14	No	Yes
7:00	5368	6228	860	2076	860	14	Yes	Yes
8:00	4789	5695	906	1898	906	16	No	Yes
9:00	3090	3624	534	1208	534	15	No	Yes
10:00	2043	2367	324	789	324	14	No	Yes
11:00	1835	2178	343	726	343	16	No	Yes
12:00	1870	2192	322	731	322	15	No	Yes
13:00	1912	2189	277	730	277	13	No	No
14:00	1950	2252	302	751	302	13	No	Yes
15:00	2080	2424	344	808	344	14	No	Yes
16:00	2502	2899	397	966	397	14	No	Yes
17:00	3399	3847	448	1282	448	12	No	Yes
18:00	2397	2688	291	896	291	11	No	No
19:00	1401	1588	187	529	187	12	No	No
20:00	1123	1240	117	413	117	9	No	No
21:00	801	913	112	304	112	12	No	No
22:00	524	580	56	193	56	10	No	No
23:00	306	338	32	113	32	9	No	No

Turning Movement Counts

013.

	Creedmoor Rd					Creedmoor Rd				I-540 WB Ramps						
		N	ortnb	ouna			50	outhbo	una		Westbound					
Start Time	Left	Thru	Rgt	Peds	App. Total	Left	Thru	Rgt	Peds	App. Total	Left	Thru	Rgt	Peds	App. Total	Int. Total
6:15 AM	56	54	0	0	110	0	99	68	0	167	38	0	40	0	78	355
6:30 AM	55	55	0	0	110	0	156	63	0	219	69	0	64	0	133	462
6:45 AM	87	75	0	0	162	0	173	89	0	262	75	1	52	0	128	552
7:00 AM	116	76	0	0	192	0	141	53	0	194	89	1	57	0	147	533
Total	314	260	0	0	574	0	569	273	0	842	271	2	213	0	486	1902
	_										_					
7:15 AM	144	104	0	0	248	0	191	44	0	235	88	0	38	0	126	609
7:30 AM	166	91	0	0	257	0	265	64	0	329	86	0	52	0	138	724
7:45 AM	180	128	0	0	308	0	311	92	0	403	66	2	34	0	102	813
8:00 AM	184	138	0	0	322	0	273	86	0	359	71	0	33	0	104	785
Total	674	461	0	0	1135	0	1040	286	0	1326	311	2	157	0	470	2931

*Traffic Volume hourly counts begin on the hour (0:00); Turning Movement hourly totals begin on the quarter hour (0:15).

Ramp Merge Capacity

The on-ramps were analyzed for the AM peak hour, which is the peak direction of travel. The analysis was performed using the ramps module for merge junctions of the 2010 Highway Capacity Software (HCS), which is based on methodologies from the 2010 Highway Capacity Manual (HCM).

Traffic volumes used in the analysis of the merge junctions were developed from 24-hour traffic counts collected in December 2013. The 15-minute intervals were aggregated into hourly volumes, from which the AM peak hour volume was identified. The peak hour factor (PHF) was calculated using the highest 15-minute volume of the peak hour volume.

While the ramp merge capacity analysis shows a LOS D in the AM peak hour, a slight increase in the number of vehicles at this ramp would cause the capacity analysis results to show a LOS F.

	Peak Hour	Volume	Level- Of-	Density (pc/mi/In)	
Description	Upstream Freeway	On- Ramp	Service (LOS)		
I-540 Westbound					
On-Ramp @ Creedmoor Rd	5,412	963	D	33.5	

Congestion

Congestion data was collected from the RITIS Vehicle Probe Project using Inrix data. Bottleneck occurrences are identified when the speed falls below 60% of the reference speed (85th percentile speed for all time periods) for greater than 5 minutes. Additional threshold criteria applied to identify bottleneck congestion that would benefit from ramp metering includes durations lasting 30 minutes and average maximum length of congestion greater than ½ mile and occurring at least twice a week (26 occurrences over the 3-month period).

	Spring 2011	Spring 2013
Ave Length of Congestion (Miles)	1.31	3.48
Duration of Congestion (Min)	22	51
Number of Occurrences	22	44
Typical Times of Congestion	08:00-09:00	07:30-09:30

	Fall 2011	Fall 2013
Ave Length of Congestion (Miles)	1.72	4.30
Duration of Congestion (Min)	27	52
Number of Occurrences	19	43
Typical Times of Congestion	08:00-09:00	07:30-09:30

Crash Data

The total number of accidents from November 2010 through October 2013 was: 8 Of these 7 were accidents which can be associated with congestion: Type 21-Rear end, slow or stop: 4 (50%) Type 28- Sideswipe, same direction: 3 (38%)

Observations

Log 138 is a direct ramp with no sight distance issues. There is a very slight uphill grade. There is CCTV coverage of the merge area of the ramp with the mainline but trees block most of the CCTV coverage of the ramp. The ramp has large easement space but no designated pull-off area. Long AM queues were observed on Creedmoor Rd for the northbound left turn onto the ramp.

Long queues starting around 7:30 AM extending until around 8:30 AM were observed on Creedmoor Rd for the northbound dual left turn lanes onto the ramp. The signal operation kept the ramp traffic is fairly tight platoons. Northbound left turn traffic queued up and filled the turn lanes between the two ramp signals.

The ramp traffic was able to merge to a single lane on the ramp without affecting the traffic signal operation until the highest peak 15 minutes. At the highest peak, the tail end of the left turn traffic had some difficulty merging onto I-540 and had to stop until there was a gap. In the highest 15-minute intervals, the traffic merging onto I-540 forced traffic on I-540 westbound to slow down and created some unstable traffic flow on I-540.

NCDOT I-540 Westbound Ramp Metering Study

140

Site Summary Document

Site Details

Site Number	140	
Freeway	1-540	
Cross Street	Six Forks Rd	13.9210:140
Exit	11	
Direction	Westbound	
County	Wake	

Physical Characteristics Overview

Origin of Ramp	SPUI signal
Lane Addition onto Main Freeway length (ft)	None
Number of Entrance Ramp Lanes	2
Lane Drop on Entrance Ramp Before Merge	No
Number of Freeway Lanes Before Merge	3
Number of Freeway Lanes After Merge	3
Entrance Ramp Length to Back of Gore (ft)	800
Entrance Ramp Length to Tip of Gore (ft)	1150
Merge Length (ft)	330'/1950'
Entrance Ramp Horizontal Alignment	Straight
Entrance Ramp Vertical Alignment	-3%
Entrance Ramp Shoulder (Paved Full Width)	Lt-4', Rt-4'
Main Freeway Vertical Alignment Downstream	Level
Main Freeway Shoulder	Left- 12', Right- 12'
Number of Vehicles Storage	66
Guardrail	Guardrail begins at gore and
	continues downstream of ramp
Pipe Crossing	None present

Signalization Overview

Upstream Signal	Single point urban interchange with right turn yield onto
	ramp. Left turn phasing is protected only.
Signal Timing	SPUI with dual NBL, yield SBR
Nearest Power Source	Signal or nearby transformer

Signing Overview

Existing Signing	No issue.

Traffic Volumes

Data collected on 12/05/2013.

Period Beginning	Upstream Hourly Flow Rate	Downstream Hourly Flow Rate	On-Ramp Hourly Flow Rate	Downstream Flow per Lane	On-Ramp Flow per Lane	On-Ramp % of DS	Hour Meets Ideal Criteria for Ramp Metering	Hour Meets Acceptable Criteria for Ramp Metering
0:00	178	199	21	66	11	11	No	No
1:00	117	129	12	43	6	9	No	No
2:00	102	111	9	37	5	8	No	No
3:00	185	217	32	72	16	15	No	No
4:00	343	389	46	130	23	12	No	No
5:00	975	1096	121	365	61	11	No	No
6:00	3043	3479	436	1160	218	13	No	No
7:00	5096	6072	976	2024	488	16	Yes	Yes
8:00	4143	4938	795	1646	398	16	No	Yes
9:00	2918	3442	524	1147	262	15	No	No
10:00	1999	2407	408	802	204	17	No	No
11:00	1814	2240	426	747	213	19	No	No
12:00	1912	2364	452	788	226	19	No	No
13:00	1975	2409	434	803	217	18	No	No
14:00	1985	2439	454	813	227	19	No	No
15:00	2296	2758	462	919	231	17	No	No
16:00	2483	3097	614	1032	307	20	No	Yes
17:00	3245	4080	835	1360	418	20	No	Yes
18:00	2391	2983	592	994	296	20	No	No
19:00	1404	1705	301	568	151	18	No	No
20:00	1111	1370	259	457	130	19	No	No
21:00	944	1169	225	390	113	19	No	No
22:00	660	785	125	262	63	16	No	No
23:00	350	395	45	132	23	11	No	No

Turning Movement Counts

13.

		Si	x For	ks Rd		Six Forks Rd			d I-540 WB Ramps							
		N	orthbo	ound			Sc	outhbo	und		Westbound					
Start Time	Left	Thru	Rgt	Peds	App. Total	Left	Thru	Rgt	Peds	App. Total	Left	Thru	Rgt	Peds	App. Total	Int. Total
6:15 AM	68	21	0	0	89	7	51	29	0	87	34	0	6	0	40	216
6:30 AM	84	21	0	0	105	33	96	45	0	174	58	0	17	0	75	354
6:45 AM	80	42	0	0	122	41	144	70	0	255	98	0	14	0	112	489
7:00 AM	131	45	0	0	176	55	153	83	0	291	91	0	18	0	109	576
Total	363	129	0	0	492	136	444	227	0	807	281	0	55	0	336	1635
7:15 AM	143	57	0	0	200	62	216	107	0	385	111	0	26	0	137	722
7:30 AM	158	54	0	0	212	56	241	106	0	403	94	0	21	0	115	730
7:45 AM	150	119	0	0	269	54	235	98	0	387	135	0	31	0	166	822
8:00 AM	152	116	0	0	268	35	253	86	0	374	152	0	25	0	177	819
Total	603	346	0	0	949	207	945	397	0	1549	492	0	103	0	595	3093

*Traffic Volume hourly counts begin on the hour (0:00); Turning Movement hourly totals begin on the quarter hour (0:15).

Ramp Merge Capacity

The on-ramps were analyzed for the AM peak hour, which is the peak direction of travel. The analysis was performed using the ramps module for merge junctions of the 2010 Highway Capacity Software (HCS), which is based on methodologies from the 2010 Highway Capacity Manual (HCM).

Traffic volumes used in the analysis of the merge junctions were developed from 24-hour traffic counts collected in December 2013. The 15-minute intervals were aggregated into hourly volumes, from which the AM peak hour volume was identified. The peak hour factor (PHF) was calculated using the highest 15-minute volume of the peak hour volume.

	Peak Hour	Volume	Level- Of-		
Description	Upstream Freeway	On- Ramp	Service (LOS)	Density (pc/mi/In)	
I-540 Westbound On-Ramp @ Six Forks Rd	5,096	976	В	19.5	

Congestion

Congestion data was collected from the RITIS Vehicle Probe Project using Inrix data. Bottleneck occurrences are identified when the speed falls below 60% of the reference speed (85th percentile speed for all time periods) for greater than 5 minutes. Additional threshold criteria applied to identify bottleneck congestion that would benefit from ramp metering includes durations lasting 30 minutes and average maximum length of congestion greater than ½ mile and occurring at least twice a week (26 occurrences over the 3-month period).

	Spring 2011	Spring 2013
Ave Length of Congestion (Miles)	1.53	2.24
Duration of Congestion (Min)	17	25
Number of Occurrences	12	9
Typical Times of Congestion	N/A	07:30-09:00

	Fall 2011	Fall 2013
Ave Length of Congestion (Miles)	1.71	3.35
Duration of Congestion (Min)	23	37
Number of Occurrences	9	8
Typical Times of Congestion	08:00-09:00	7:30-09:00

Crash Data

The total number of accidents from November 2010 through October 2013 was: 5 Of these 5 were accidents which can be associated with congestion: Type 21-Rear end, slow or stop: 2 (40%) Type 28- Sideswipe, same direction: 3 (60%)

Observations

Log 140 is a two lane direct ramp with no sight distance issues. The right lane merges 330' downstream and the other lane merges with the mainline 1950' downstream. There is a very slight downhill grade. There is CCTV coverage of the entire ramp. The ramp has large easement space but no designated pull-off area.

Southbound AM right turn traffic from Six Forks Road was light. The northbound AM peak began at 7:30 AM. Largest observed queue was 20 cars.

The signal operation provides for tight platoons of traffic northbound onto the ramp. The ramp traffic was able to merge into a single lane on the ramp without affecting the traffic signal operation. Some problems with the right run traffic onto the ramp merging with the left turn traffic onto the ramp.

Starting around 7:30 AM, the traffic merging onto I-540 forced traffic on I-540 westbound to slow down and created some unstable traffic flow on I-540 in the two outside westbound lanes.

NCDOT I-540 Westbound Ramp Metering Study

142

Site Summary Document

Site Details

Site Number	142	
Freeway	I-540	13 9209 142
Cross Street	Falls of the Neuse Rd	
Exit	11	
Direction	Westbound	
County	Wake	E A CAS

Physical Characteristics Overview

Origin of Ramp	Signal
Lane Addition onto Main Freeway length (ft)	None
Number of Entrance Ramp Lanes	2
Lane Drop on Entrance Ramp Before Merge	No
Number of Freeway Lanes Before Merge	3
Number of Freeway Lanes After Merge	3
Entrance Ramp Length to Back of Gore (ft)	1400
Entrance Ramp Length to Tip of Gore (ft)	1750
Merge Length (ft)	800
Entrance Ramp Horizontal Alignment	Slight Curve
Entrance Ramp Vertical Alignment	-2%
Entrance Ramp Shoulder (Paved Full Width)	Lt-4', Rt-10'
Main Freeway Vertical Alignment Downstream	Level
Main Freeway Shoulder	Left- 12', Right- 12'
Number of Vehicles Storage	78
Guardrail	Guardrail along right side of
	ramp.
Pipe Crossing	None present

Signalization Overview

Upstream Signal	Four way signal with right turn on red onto ramp. Left turn
	phasing is protected only.
Signal Timing	Protected NBL, SBR has right turn on red and overlap
	phase.
Nearest Power Source	Signal or nearby transformer

Signing Overview

-	
Existing Signing	No issue.

Traffic Volumes

Data collected on 12/05/2013.

Period Beginning	Upstream Hourly Flow Rate	Downstream Hourly Flow Rate	On-Ramp Hourly Flow Rate	Downstream Flow per Lane	On-Ramp Flow per Lane	On-Ramp % of Downstream	Hour Meets Ideal Criteria for Ramp Metering	Hour Meets Acceptable Criteria for Ramp Metering
0:00	158	192	34	64	34	18	No	No
1:00	120	135	15	45	15	11	No	No
2:00	83	101	18	34	18	18	No	No
3:00	168	212	44	71	44	21	No	No
4:00	300	374	74	125	74	20	No	No
5:00	827	1093	266	364	266	24	No	No
6:00	2536	3436	900	1145	900	26	No	Yes
7:00	4230	5750	1520	1917	1520	26	No	No
8:00	3442	4704	1262	1568	1262	27	No	No
9:00	2390	3453	1063	1151	1063	31	No	Yes
10:00	1680	2356	676	785	676	29	No	Yes
11:00	1539	2240	701	747	701	31	No	Yes
12:00	1681	2356	675	785	675	29	No	Yes
13:00	1788	2462	674	821	674	27	No	Yes
14:00	1804	2534	730	845	730	29	No	Yes
15:00	2094	2865	771	955	771	27	No	Yes
16:00	2281	3103	822	1034	822	26	No	Yes
17:00	2836	3744	908	1248	908	24	No	Yes
18:00	2097	2831	734	944	734	26	No	Yes
19:00	1238	1707	469	569	469	27	No	Yes
20:00	958	1321	363	440	363	27	No	Yes
21:00	847	1131	284	377	284	25	No	No
22:00	554	716	162	239	162	23	No	No
23:00	280	389	109	130	109	28	No	No

Turning Movement Counts

Data collected on 12/05/2013.

Groups Printed - Cars, PU, Vans - Heavy Trucks												-									
		Falls	s of Ne	euse R	d		Falls of Neuse Rd -5			-540 WB Ramps_Falls Valley D			J I-540 WB Ramps_Falls Valley Dr								
		N	orthb	ound			Sc	outhbo	und		Eastbound				Wes	tbour	nd				
Start Time	Left	Thru	Rgt	Peds	App. Total	Left	Thru	Rgt	Peds	App. Total	Left	Thru	Rgt	Peds	App. Total	Left	Thru	Rgt	Peds	App. Total	Int. Total
6:15 AM	17	99	1	0	117	6	106	139	0	251	12	2	22	0	36	3	10	3	0	16	420
6:30 AM	34	105	4	0	143	3	157	229	0	389	23	1	31	0	55	10	23	3	0	36	623
6:45 AM	42	157	3	0	202	6	233	252	0	491	45	2	39	0	86	13	14	7	0	34	813
7:00 AM	54	105	11	0	170	2	258	319	0	579	38	3	41	0	82	16	42	3	0	61	892
Total	147	466	19	0	632	17	754	939	0	1710	118	8	133	0	259	42	89	16	0	147	2748
															-						
7:15 AM	57	174	5	0	236	2	360	347	0	709	24	4	51	0	79	14	36	3	0	53	1077
7:30 AM	73	186	13	0	272	6	359	230	0	595	31	3	104	0	138	27	44	6	0	77	1082
7:45 AM	55	315	18	0	388	11	366	227	0	604	34	8	89	0	131	24	34	3	0	61	1184
8:00 AM	60	242	14	0	316	5	318	230	0	553	50	5	85	0	140	25	28	3	0	56	1065
Total	245	917	50	0	1212	24	1403	1034	0	2461	139	20	329	0	488	90	142	15	0	247	4408

*Traffic Volume hourly counts begin on the hour (0:00); Turning Movement hourly totals begin on the quarter hour (0:15).

Ramp Merge Capacity

The on-ramps were analyzed for the AM peak hour, which is the peak direction of travel. The analysis was performed using the ramps module for merge junctions of the 2010 Highway Capacity Software (HCS), which is based on methodologies from the 2010 Highway Capacity Manual (HCM).

Traffic volumes used in the analysis of the merge junctions were developed from 24-hour traffic counts collected in December 2013. The 15-minute intervals were aggregated into hourly volumes, from which the AM peak hour volume was identified. The peak hour factor (PHF) was calculated using the highest 15-minute volume of the peak hour volume.

	Peak Hour	Volume	Level- Of-			
Description	Upstream Freeway	On- Ramp	Service (LOS)	Density (pc/mi/In)		
I-540 Westbound						
On-Ramp @ Falls of the Neuse Rd	4,230	1,520	D	34.1		

Congestion

Congestion data was collected from the RITIS Vehicle Probe Project using Inrix data. Bottleneck occurrences are identified when the speed falls below 60% of the reference speed (85th percentile speed for all time periods) for greater than 5 minutes. Additional threshold criteria applied to identify bottleneck congestion that would benefit from ramp metering includes durations lasting 30 minutes and average maximum length of congestion greater than ½ mile and occurring at least twice a week (26 occurrences over the 3-month period).

	Spring 2011	Spring 2013
Ave Length of Congestion (Miles)	1.32	0.43
Duration of Congestion (Min)	16	16
Number of Occurrences	4	5
Typical Times of Congestion	N/A	7:30-8:30 *

Note: this location fails bottleneck test for the required number of bottlenecks.

	Fall 2011	Fall 2013
Ave Length of Congestion (Miles)	0.96	1.02
Duration of Congestion (Min)	14	33
Number of Occurrences	11	6
Typical Times of Congestion	N/A	N/A

Crash Data

The total number of accidents from November 2010 through October 2013 was: 23 Of these 10 were accidents which can be associated with congestion: Type 21-Rear end, slow or stop: 9 (39%) Type 28- Sideswipe, same direction: 1 (4%)

Observations

Log 142 is a direct ramp with no sight distance issues. The right lane merges about halfway down the ramp. There is a very slight downhill grade and a steep drop off behind the guardrail. There is CCTV coverage for most of the ramp. The ramp has large easement space but no designated pull-off area.

Northbound left turn was relatively light, at 7:20 AM the queue was 12 cars.

Southbound right turn traffic backed up to 2100' to Litchford Rd. at 7:15 AM.

Site Selection Comments

Ramp traffic is well-organized platoons. Starting around 7:00 AM, the traffic merging onto I-540 forced traffic on I-540 westbound to slow down and created some unstable traffic flow on I-540.

Appendix B. Highway Capacity Analysis Worksheets

HCS 2010: Freeway Merge and Diverge Segments Release 6.41

Phone: E-mail: Fax:

	Merg	ge Analysi:	3		
Analyst: Agency/Co.: Date performed: Analysis time period: Freeway/Dir of Travel: Junction: Jurisdiction: Analysis Year: Description: I-540 Ram	TDK Atkins 12/18/2013 AM Peak I-540 Westbou Leesville Rd 136 2013 Existing p Metering Stu	ınd J idy			
	Fre	eeway Data			
Type of analysis Number of lanes in free Free-flow speed on free Volume on freeway	way way	Mei 3 70 581	cge 0 31	mph vph	
	On	Ramp Data			
Side of freeway Number of lanes in ramp Free-flow speed on ramp Volume on ramp Length of first accel/d Length of second accel/	ecel lane decel lane	Ri(1 45 142 150	9ht 0 29 00	mph vph ft ft	
	Adjacent Ram	np Data (ii	one exist	ts)	
Does adjacent ramp exis Volume on adjacent Ramp Position of adjacent Ra Type of adjacent Ramp Distance to adjacent Ra	mp	No		vph ft	
Con	version to pc/	h Under Ba	ase Condit:	ions	
Junction Components		Freeway	Ramp	Ad	jacent mp
Volume, V (vph) Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade		5881 0.97 1516 3 0 Level	1429 0.89 401 2 0 Level	8	vph v % %
Length Trucks and buses PCE, E Recreational vehicle PC	T E, ER	1.5	mi 1.5 1.2	mi	mi

Heavy vehicle adjustment, fHV 0.985 0.990 1.00 1.00 6154 1622 Driver population factor, fP Flow rate, vp pcph Estimation of V12 Merge Areas L = (Equation 13-6 or 13-7) EQ 0.619 Using Equation 1 P = FM v = v (P) = 3812 pc/h 12 F FM Capacity Checks Actual Maximum LOS F? 7776 7200 Yes 7776 7200 v Yes FO 2342 pc/h (Equation 13-14 or 13-17) v or v 3 av34 v or v > 2700 pc/h? Is No 3 av34 Is v or v > 1.5 v /2 3 av34 12 If yes, v = 3812 No (Equation 13-15, 13-16, 13-18, or 13-19) 12A Flow Entering Merge Influence Area Actual Max Desirable Violation? 7776 4600 V Yes R12 Level of Service Determination (if not F)____ Density, D = 5.475 + 0.00734 v + 0.0078 v - 0.00627 L = 37.7 pc/mi/ln R 12 R A Level of service for ramp-freeway junction areas of influence F Speed Estimation Intermediate speed variable, M = 1.079S Space mean speed in ramp influence area, S = 39.8 mph R Space mean speed in outer lanes, S = 63.2 mph 0 S = 44.8 mph Space mean speed for all vehicles,

HCS 2010: Freeway Merge and Diverge Segments Release 6.41

Phone: E-mail: Fax:

	Merg	ge Analysis	last and manufactory and second and		
Analyst: Agency/Co.: Date performed: Analysis time period: Freeway/Dir of Travel: Junction: Jurisdiction: Analysis Year: Description: I-540 Ram	TDK Atkins 12/18/2013 AM Peak I-540 Westbou Creedmoor Rd 138 2013 Existing pp Metering Stu	und J idy			
	Fre	eeway Data_			
Type of analysis Number of lanes in free Free-flow speed on free Volume on freeway	eway eway	Mer 3 70. 541	ge 0 2	mph vph	
	On	Ramp Data_			
Side of freeway Number of lanes in ramp Free-flow speed on ramp Volume on ramp Length of first accel/d Length of second accel/	ecel lane decel lane	Rig 1 45. 963 150	ht 0 0	mph vph ft ft	
	Adjacent Ram	mp Data (if	one exist	s)	
Does adjacent ramp exis Volume on adjacent Ramp Position of adjacent Ra Type of adjacent Ramp Distance to adjacent Ra	mp	No		vph ft	
Con	version to pc/	'h Under Ba	se Conditi	ons	
Junction Components		Freeway	Ramp		Adjacent Ramp
Volume, V (vph) Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type:		5412 0.92 1471 5 0 Level	963 0.87 277 4 0 Level		vph v % %
Grade Length Trucks and buses PCE, E Recreational vehicle PC	E, ER	1.5	* mi 1.5 1.2	% mi	% mi

Heavy vehicle adjustment, fHV 0.976 0.980 1.00 1.00 6030 1129 Driver population factor, fP Flow rate, vp pcph Estimation of V12 Merge Areas L = (Equation 13-6 or 13-7) EQ 0.619 Using Equation 1 P = FM v = v (P) = 3736 pc/h 12 F FM Capacity Checks Actual Maximum LOS F? 7159 7200 No v FO 2294 pc/h (Equation 13-14 or 13-17) v or v 3 av34 v or v > 2700 pc/h? Is No 3 av34 Is v or v > 1.5 v /2 3 av34 12 If yes, v = 3736 No (Equation 13-15, 13-16, 13-18, or 13-19) 12A Flow Entering Merge Influence Area Actual Max Desirable Violation? 7159 4600 V Yes R12 Level of Service Determination (if not F)____ Density, D = 5.475 + 0.00734 v + 0.0078 v - 0.00627 L = 33.5 pc/mi/ln R 12 R A Level of service for ramp-freeway junction areas of influence D Speed Estimation Intermediate speed variable, M = 0.692S Space mean speed in ramp influence area, s = 50.6 mph R Space mean speed in outer lanes, S = 63.5 mph 0 s = 54.2 mph Space mean speed for all vehicles,

HCS 2010: Freeway Merge and Diverge Segments Release 6.41

Phone: E-mail: Fax:

	Merg	e Analysi	s				
Analyst: Agency/Co.: Date performed: Analysis time period: Freeway/Dir of Travel: Junction: Jurisdiction: Analysis Year: Description: I-540 Ramp	TDK Atkins 12/18/2013 AM Peak I-540 Westbou Six Forks Rd 140 2013 Existing Metering Stu	nd dy					
	Fre	eway Data		-			
Type of analysis Number of lanes in freew Free-flow speed on freew Volume on freeway	ay ay	Me 3 70 50	rge .0 96		mph vph		
	On	Ramp Data					
Side of freeway Number of lanes in ramp Free-flow speed on ramp Volume on ramp Length of first accel/decel lane Length of second accel/decel lane		Ri 2 45 97 80 15	Right 2 45.0 976 800 1500				
	_Adjacent Ram	p Data (i	f one	exists)		
Does adjacent ramp exist Volume on adjacent Ramp Position of adjacent Ram Type of adjacent Ramp Distance to adjacent Ram	6 5 5	No			vph ft		
Conv	ersion to pc/	h Under B	ase Co	onditio	ns		
Junction Components	tion Components		ł	Ramp	Adjacent Ramp		
Volume, V (vph) Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade		5096 0.90 1416 4 0 Level	(1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	976 0.95 257 4 D Level	90		vph v % %
Length Trucks and buses PCE, ET Recreational vehicle PCE	, ER	1.5	mi	1.5	mi		mi

Heavy vehicle adjustment, fHV 0.980 0.980 1.00 1.00 5775 1048 Driver population factor, fP Flow rate, vp pcph Estimation of V12 Merge Areas L = (Equation 13-6 or 13-7) EQ 0.555 Using Equation 0 P = FM v = v (P) = 3205 pc/h 12 F FM Capacity Checks Actual Maximum LOS F? 6823 7200 No 7200 v FO 2570 pc/h (Equation 13-14 or 13-17) v or v 3 av34 v or v > 2700 pc/h? Is No 3 av34 Is v or v > 1.5 v /2 3 av34 12 If yes, v = 3300 Yes (Equation 13-15, 13-16, 13-18, or 13-19) 12A Flow Entering Merge Influence Area Actual Max Desirable Violation? 6823 4600 V No 12A Level of Service Determination (if not F)____ Density, D = 5.475 + 0.00734 v + 0.0078 v - 0.00627 L = 19.5 pc/mi/ln R 12 R A Level of service for ramp-freeway junction areas of influence B Speed Estimation Intermediate speed variable, M = 0.344S Space mean speed in ramp influence area, S = 60.4 mph R Space mean speed in outer lanes, S = 62.4 mph 0 S = 61.1 mph Space mean speed for all vehicles,

HCS 2010: Freeway Merge and Diverge Segments Release 6.41

Phone: E-mail: Fax:

		Merge A	Analys	is	which has a strengt and has not a			
Analyst: Agency/Co.: Date performed:	TDK Atkins 12/18/201	3						
Freeway/Dir of Travel: Junction:	I-540 Wes Falls of	tbound Neuse F	۶d					
Jurisdiction: Analysis Year: Description: I-540 Ram	142 2013 Exis mp Metering	ting Study						
		Freewa	ay Dat	a			-	
Type of analysis			M	lerge				
Number of lanes in free	wav		3					
Free-flow speed on free	wav		7	0.0		mph		
Volume on freeway			4230			vph		
		_On Ran	np Dat	.a				
Side of freeway			F	ight				
Number of lanes in ramp			1					
Free-flow speed on ramp			45.0			mph		
Volume on ramp			1520			vph		
Length of first accel/decel lane			1200			ft		
Length of second accel/	decel lane					ft		
	Adjacent	Ramp I	Data (if or	ne exist:	5)		
Does adjacent ramp exist?			No					
Volume on adjacent Ramp						vph		
Position of adjacent Ra	amp							
Type of adjacent Ramp								
Distance to adjacent Ra	amp					ft		
Cor	nversion to	pc/h t	Under	Base	Conditio	ons		
Junction Components	tion Components		Freeway		Ramp	Adjacent Ramp		ıt
Volume, V (vph)		4	1230		1520			vph
Peak-hour factor, PHF		(0.90		0.85			
Peak 15-min volume, v15	5	1	L175		447			v
Trucks and buses		E	5		1			olo.
Recreational vehicles		C)		0			90
Terrain type:		I	Level		Level			
Grade				00		8		8
Length				mi		mi		mi
Trucks and buses PCE, H	Τ	3	.5		1.5			
Recreational vehicle PCE, ER			.2		1.2			

Heavy vehicle adjustment, fHV 0.976 0.995 1.00 1.00 4818 1797 Driver population factor, fP Flow rate, vp pcph Estimation of V12 Merge Areas L = (Equation 13-6 or 13-7) EQ 0.611 Using Equation 1 P = FM v = v (P) = 2944 pc/h 12 F FM Capacity Checks Actual Maximum LOS F? 6615 7200 No v FO 1874 pc/h (Equation 13-14 or 13-17) v or v 3 av34 v or v > 2700 pc/h? Is No 3 av34 Is v or v > 1.5 v /2 3 av34 12 If yes, v = 2944 No (Equation 13-15, 13-16, 13-18, or 13-19) 12A Flow Entering Merge Influence Area Actual Max Desirable Violation? 6615 4600 V Yes R12 Level of Service Determination (if not F)____ Density, D = 5.475 + 0.00734 v + 0.0078 v - 0.00627 L = 34.1 pc/mi/ln R 12 R A Level of service for ramp-freeway junction areas of influence D Speed Estimation Intermediate speed variable, M = 0.660S Space mean speed in ramp influence area, s = 51.5 mph R Space mean speed in outer lanes, S = 65.1 mph 0 S = 54.8 mph Space mean speed for all vehicles,

Appendix C. Geometric Layouts

Figure 5. Proposed Improvements – Leesville Road

Figure 6. Proposed Improvements – Creedmoor Road

MIN.QUEUE STORAGE = 450' IDEAL QUEUE STORAGE = 650' RAMP WIDENING PAVING AREA = 5,019 S.F. PAVEMENT RESURFACING AREA = 25,564 S.F.

Figure 7. Proposed Improvements – Six Forks Road

MIN.OUEUE STORAGE = 478' IDEAL OUEUE STORAGE = 778' RAMP WIDENING PAVING AREA = 0 S.F. GUARDRAIL RELOCATION = 0' EARTHWORK AREA BEHIND GUARDRAIL = 0 S.F. RESURFACE AREA = 0 S.F.

NO ROADWAY IMPROVEMENT WORK FOR THIS LOCATION

I-540 Westbound Ramp Metering Analysis Final Report

Figure 8. Proposed Improvements – Falls of Neuse Road

MIN.QUEUE STORAGE = 525' IDEAL QUEUE STORAGE = 725' RAMP WIDENING PAVING AREA = 3,305 S.F. GUARDRAIL RELOCATION = 985' EARTHWORK AREA BEHIND GUARDRAIL = 5,560 S.F. RESURFACE AREA = 33,300 S.F.

RAMP METER STOP BAR

Appendix D. Cost Estimates

Typical Design and Construction Costs										
Site Assumptions Checklist										
Log No.: 136 Location: I-540 Westbound	Ramp:	Leesville Road								
Two Lane Ramp Widening (Y/N): Length of Two Lane Ramp Widening (ft.): Distance from Stopbar to W3-8 sign (ft.):	Y 985 885									
Pipe Crossings (Y/N): Retaining Walls (Y/N): Fill (Y/N): Guardrail Other than for Ramp Meter Equipment (Y/N): Install Guardrail (one side or two)	N N N 2									
Nearest Power Source (ft.):	1095]								
Notes										
Notes Nearest power source is traffic signal. Install pedestal poles on both sides, protect with guardrail both sides of ramp Connect to City of Raleigh fiber-optic communciations network. Modify splicing in City signal cabinet. Mount CCTV on existing signal pole.										

Log No.: 136	Ramp:		Le	esville Road	ł		
Location: I-540 Westbound	-						
Categories Description	Unit	Quantity	l	Jnit Cost	٦	Fotal Cost	Assumptions
Earthwork and Structures							
Retaining Wall 5' High	LF	0	\$	250.00	\$	-	
Retaining Wall 10' High	LF	0	\$	475.00	\$	-	
Excavation	CY	0	\$	4.00	\$	-	
Fill	CY	206	\$	5.00	\$	1,030.00	From measured areas @ 20' depth.
Seeding	SY	3633	\$	2.50			Seeding along pavement widening and
							around trench, conduit, pull box, and
					\$	9,082.50	foundation areas
Subtotal					\$	10,112.50	
				l			
Guardrail							
Guardrail Rail	LF	1235	\$	15.00	\$	18,525.00	From measured area
Guardrail Approach End Treatment	EA	2	\$	1,500.00	\$	3,000.00	
Subtotal					\$	21.525.00	
	1 1		1		Ŧ		1
Paving							
Ramp Widening	SY	545	\$	32.00	\$	17.447.11	From measured area
Pavement Resurfacing	SY	2793	\$	12.00	\$	33,518.67	From measured area
Subtotal			,		\$	50,965,78	
Cubiciai					Ψ	00,000.10	
Drainage							
Pine	IF	0	\$	44 00	\$	-	
Subtotal	L 1	0	Ψ	11.00	¢	-	
Subiolai					φ	-	1
Cignalization							
Signalization		10	¢	204 50			One guerre three personal and ano
o xo loops	EA	10	Ф	394.50	¢	2 045 00	One queue, three passage and one
Detector Load in Cable		200	¢	1 50	Ъ Ф	5,945.00	Assumed setback distance 250'
		390	¢	1.00	ф Ф	1 800 00	Assumed setback distance 350
Detector pelo		1	φ	1,800.00	ф Ф	1,600.00	
Detector pole		6	¢ ¢	0,000.00	ф Ф	1,000.00	
Pullbox (Stu.)		2125	ф Ф	500.00	ф Ф	1,000.00	
Conduit (Trenched)		100	¢	14.00	ф Ф	1 400 00	All pulposes
Conduit (Directional Drilled)		100	φ	14.00	ф Ф	1,400.00	Two ramp crossings, muit. conduits
	EA	1005	\$	3,000.00	⊅ ¢	3,000.00	
Electrical Conductors		1095	\$	5.00	\$	5,475.00	
2070 Controller and Cabinet	EA	1	\$	14,000.00	\$ \$	14,000.00	
Firmware/Calibration	EA	1	\$	5,300.00	\$	5,300.00	
		1	\$	450.00	\$	450.00	
45 Mast Arm Poles and Foundation	EA	0	\$	15,000.00	\$	-	
Pedestal Pole	EA	2	\$	1,000.00	\$	2,000.00	dual pedestals
Inree Section Signal Head	EA	2	\$	1,000.00	\$	2,000.00	
One Section Signal Head	EA	2	\$	500.00	\$	1,000.00	Ramp meter advance signal
Signal Cable	L⊦	505	\$	2.75	\$	1,388.75	
Subtotal					\$	68,893.75	1

Log No.: 136	Ramp):	Lee	esville Road	t		
Location: I-540 Westbo	und						
Categories Desc	ription Unit	Quantity	ι	Init Cost	<u> </u>	Total Cost	Assumptions
ITS and Communications							
CCTV Camera	EA	1	\$	4,000.00	\$	4,000.00	
CCTV Cabinet	EA	1	\$	5,000.00	\$	5,000.00	
CCTV Pole with riser	EA	0	\$	3,000.00	\$	-	
1" Riser	EA	1	\$	400.00	\$	400.00	
Serial Communications	EA	350	\$	2.00	\$	700.00	Link to MVDS
Splice Enclosure	EA	2	\$	1,000.00	\$	2,000.00	Link to SMFO
Pullbox (Special Size)	EA	1	\$	1,750.00	\$	1,750.00	For splice enclosure
Interconnect Center	EA	2	\$	1,500.00	\$	3,000.00	In cabinet
Modify splice in City sign	al cabinet EA	1	\$	2,200.00	\$	2,200.00	
Fiber-optic Drop Cable (s	six strands) LF	1195	\$	2.00			Drop cable to controller cabinet, Same
							distance to power source plus 300' for
					\$	2,390.00	proposed CCTV on ramp
Ethernet Switch	EA	2	\$	2,000.00	\$	4,000.00	CCTV and ramp meter controller
Subtotal					\$	25,440.00	
Pavement Marking			<u> </u>				
Pavement Marking Remo	val LF	640	\$	0.62			40 mph design speed. 110' transitions,
			_		\$	396.80	100' narrowed lane
Raised Pavement Marke	rs EA	15	\$	4.50	\$	67.50	Along skip line only
White Edge Line		1135	\$	0.95	\$	1,078.25	110' transitions, 100' narrowed lane
Yellow Edge Line		1135	\$	0.95	\$	1,078.25	110' transitions, 100' narrowed lane
White Skip Line		1135	\$	0.24	\$	269.56	
24" Stop Bar		12	\$	7.00	\$	84.00	
Subtotal					\$	2,974.36	
Ciamina							
Signing		4	6	400.00	6	400.00	
Remove existing single a	ha dual post EA	4	\$	650.00	\$	400.00	Cian and next only
W3-8, Ramp Metered W		2	\$	650.00	\$	1,300.00	Sign and post only
P10 6 Stop Horo on Por		1	¢	175.00	ф Ф	175.00	Sign and post Redestal mounted
R10-6, Stop Here on Red		1	¢	175.00	ф Ф	175.00	Pedestal mounted
W/4 11 Merge Left	Gleen EA	1	ф Ф	650.00	ф Ф	650.00	
	LA		Ψ	000.00	e e	2 250 00	
Subtotal Construction					\$ \$	183 261 30	
				20%	÷ ¢	36 652 28	
				10%	φ ¢	18 326 14	
Total Construction				10 /0	φ ¢	220.14	
I otal Construction					Þ	230,239.81	1
Design			—	26%	\$	61 942 35	1
Construction Administration			<u> </u>	10%	\$	23 823 98	1
Total Design and Constru	ction			.0,0	\$	324.006.14	

Typical Design and Construction Costs									
Site Assumptions Checklist									
Log No.: 138 Location: I-540 Westbound	Ramp:	Creedmoor Road							
Two Lane Ramp Widening (Y/N):yLength of Two Lane Ramp Widening (ft.):250Distance from Stopbar to W3-8 sign (ft.):800									
Pipe Crossings (Y/N):NRetaining Walls (Y/N):NFill (Y/N):NGuardrail Other than for Ramp MeterNEquipment (Y/N):Install Guardrail (one side or two)2									
Nearest Power Source (ft.):	950								
	Notes								
Nearest power source is traffic signal. Install pedestal poles on both sides, protect with guardrail both sides of ramp Connect to City of Raleigh fiber-optic communciations network. Modify splicing in City signal cabinet. Mount CCTV on existing signal pole.									

Log No.: 138	Ramp:		Cre	edmoor R	load			
Location: I-540 Westbound	-							
Categories Description	Unit	Quantity	U	nit Cost		Total Cost	Assumptions	
Earthwork and Structures			-				-	
Retaining Wall 5' High	LF	0	\$	250.00	\$	-		
Retaining Wall 10' High	LF	0	\$	475.00	\$	-		
Excavation	CY	0	\$	4.00	\$	-		
Fill	CY	364	\$	5.00	\$	1,820.00	From measured area @ 2' depth.	
Seeding	SY	2860	\$	2.50			Seeding along pavement widening and	
							around trench, conduit, pull box, and	
					\$	7,150.00	foundation areas	
Subtotal					\$	8,970.00		
				I				
Guardrail								
Guardrail Rail	LF	500	\$	15.00	\$	7,500.00	From measured area	
Guardrail Approach End Treatment	EA	2	\$	1,500.00	\$	3,000.00		
Subtotal					\$	10.500.00		
	1 1				Ŧ		4	
Paving								
Ramp Widening	SY	558	\$	32.00	\$	17.845.33	From measured area	
Pavement Resurfacing	SY	2840	\$	12.00	\$	34.085.33	From measured area	
Subtotal			Ŧ		\$	51 931 00		
Cubicital				l	Ψ	01,001.00	•	
Drainage								
Pine		0	\$	44 00	\$			
	L1	0	Ψ	++.00	¢	_		
Subiolai					φ	-	1	
Circalization								
Signalization	, ,		1		-			
		40	•	004 50	_	0.045.00	One queue, three passage and one	
6 X6 IOOPS	EA	10	\$	394.50	\$	3,945.00		
Detector Lead-In Cable	EA	390	\$	1.50	\$	585.00	Assumed setback distance 350	
MVDS detector	EA	1	\$	1,800.00	\$	1,800.00		
Detector pole	EA	1	\$	6,000.00	\$	6,000.00		
Pullbox (Std.)	EA	6	\$	300.00	\$	1,800.00		
Conduit (Trenched)		2335	\$	6.00	\$	14,010.00		
Conduit (Directional Drilled)		100	\$	14.00	\$	1,400.00	I wo ramp crossings, muit. conduits	
Modify Electrical Service	EA	1	\$	3,000.00	\$	3,000.00		
Electrical Conductors	LF	950	\$	5.00	\$	4,750.00		
2070 Controller and Cabinet	EA	1	\$1	4,000.00	\$	14,000.00		
Firmware/Calibration	EA	1	\$	5,300.00	\$	5,300.00		
Cabinet Foundation	EA	1	\$	450.00	\$	450.00		
45' Mast Arm Poles and Foundation	EA	0	\$1	5,000.00	\$	-		
Pedestal Pole	EA	2	\$	1,000.00	\$	2,000.00	dual pedestals	
Three Section Signal Head	EA	2	\$	1,000.00	\$	2,000.00		
One Section Signal Head	EA	2	\$	500.00	\$	1,000.00	Ramp meter advance signal	
Signal Cable	LF	505	\$	2.75	\$	1,388.75		
Subtotal					\$	63,428.75		

Log No.: Location:	138 I-540 Westbound	Ramp:		Cre	eedmoor R	loa	d	
Categories	Description	Unit	Quantity	U	nit Cost		Total Cost	Assumptions
Communicati	ons		-					•
CCTV Car	nera	EA	1	\$	4,000.00	\$	4,000.00	
CCTV Cat	binet	EA	1	\$	5,000.00	\$	5,000.00	
CCTV Pol	e with riser	EA	0	\$	3,000.00	\$	-	
1" Riser		EA	1	\$	400.00	\$	400.00	
Serial Con	nmunications	EA	350	\$	2.00	\$	700.00	Link to MVDS
Splice End	losure	EA	1	\$	1,000.00	\$	1,000.00	Link to SMFO
Pullbox (S	pecial Size)	EA	1	\$	1,750.00	\$	1,750.00	For splice enclosure
Modify spl	ice in City signal cabinet	EA	1	\$	2,200.00	\$	2,200.00	
Interconne	ct Center	EA	2	\$	1,500.00	\$	3,000.00	In cabinet
Fiber-optic	c Drop Cable (six strands)	LF	1050	\$	2.00			Drop cable to controller cabinet, Same
								distance to power source plus 300' for
						\$	2,100.00	proposed CCTV on ramp
Ethernet S	Switch	EA	2	\$	2,000.00	\$	4,000.00	CCTV and ramp meter controller
Subtotal						\$	24,150.00	
Pavement Ma	arking							40 mph design speed, 110' transitions
Pavement	Marking Removal	LF	640	\$	0.62	\$	396.80	100' narrowed lane
Raised Pa	vement Markers	EA	12	\$	4.50	\$	54.00	Along skip line only
White Edg	e Line	LF	950	\$	0.95	\$	902.50	110' transitions, 100' narrowed lane
Yellow Ed	ge Line	LF	950	\$	0.95	\$	902.50	110' transitions, 100' narrowed lane
White Skip	Line	LF	950	\$	0.24	\$	225.63	
24" Stop E	Bar	LF	12	\$	7.00	\$	84.00	
Subtotal Signing			4	¢	100.00	\$ ¢	2,565.43	
Keniove e	XISTING SINGLE AND OUAL POST		4	¢	650.00	ф Ф	400.00	Sign and post only
W2.4 De	The Metered When Flashing		<u> </u>	¢	650.00	ф Ф	1,300.00	Sign and post only
	Prepared to Stop	EA	1	¢	175.00	\$ \$	175.00	Sign and post
P10 28 Y	X Vehicles Per Green		1	ф Ф	175.00	φ ¢	175.00	Pedestal mounted
W/4_11 M		EA FA	1	φ \$	650.00	φ \$	650.00	
	erge Leit	L/(•	Ψ	000.00	¢	2 350 00	
Subtotal Cor	nstruction					⊅ \$	164,895.18	
Traffic Co	ntrol				20%	\$	32,979.04	
Contingencies				10%	\$	16,489.52		
Total Const	ruction					\$	214,363.73]
Design					26%	\$	55,734.57]
Construction	Administration			1	10%	\$	21,436.37	1
Total Design	and Construction					\$	291,534.67	1

Typical Design and Construction Costs										
Site Assumptions Checklist										
Log No.:140ILocation:I-540 Westbound	Ramp: Six Forks Road									
Two Lane Ramp Widening (Y/N): Length of Two Lane Ramp Widening (ft.): Distance from Stopbar to W3-8 sign (ft.):	N 0 900									
Pipe Crossings (Y/N): Retaining Walls (Y/N): Fill (Y/N): Guardrail Other than for Ramp Meter Equipment (Y/N): Install Guardrail (one side or two)	N N N 2									
Nearest Power Source (ft.):	700									
Notes										
Notes Nearest power source is traffic signal. Install pedestal poles on both sides, protect with guardrail on both sides of ramp Connect to City of Raleigh fiber-optic communciations network. Modify splicing in City signal cabinet. Install new wood pole for CCTV camera.										

Log No.:	140	Ramp:		Six	Forks Roa	ad		
Location:	I-540 Westbound							
Categories	Description	Unit	Quantity	Ur	nit Cost	٦	Fotal Cost	Assumptions
Earthwork an	nd Structures							
Retaining	Wall 5' High	LF	0	\$	250.00	\$	-	
Retaining	Wall 10' High	LF	0	\$	475.00	\$	-	
Excavation	<u>-</u> ו	CY	0	\$	4.00	\$	-	
Fill		CY	0	\$	5.00	\$	-	
								Seeding along pavement widening and
								around trench, conduit, pull box, and
Seeding		SY	1426	\$	2.50	\$	3,565.00	foundation areas
Subtotal						\$	3,565.00	
Guardrail								
Guardrail	Rail	LF	500	\$	15.00	\$	7.500.00	
Guardrail	Approach End Treatment	EA	2	\$	1.500.00	\$	3.000.00	
Subtotal				Ŧ	.,	¢	10 500 00	
Subiolai						Ψ	10,300.00	
Daviaa								
Paving Dome Wie	loning	CV	0	¢	22.00	¢		l
Ramp wid	Desurfacion	SY	0	\$	32.00	\$	-	
Pavement	Resurracing	51	0	Ф	12.00	Ð	-	и И
Subtotal						\$	-	1
Drainage				1		-		
Pipe		LF	0	\$	44.00	\$	-	
Subtotal						\$	-	
Signalization								
								One queue, three passage and one
6'x6' loops	6	EA	10	\$	394.50	\$	3,945.00	clearance
Detector L	ead-in Cable	EA	390	\$	1.50	\$	585.00	Assumed setback distance 350'
MVDS det	ector	EA	1	\$	1,800.00	\$	1,800.00	Mainline detection
Detector p	oole	EA	1	\$	6,000.00	\$	6,000.00	
Pullbox (S	td.)	EA	6	\$	300.00	\$	1,800.00	
Conduit (T	renched)	LF	2085	\$	6.00	\$	12,510.00	All purposes
Conduit (E	Directional Drilled)	LF	50	\$	14.00	\$	700.00	One ramp crossing, mult. conduits
Modify Ele	ectrical Service	EA	1	\$	3,000.00	\$	3,000.00	
Electrical	Conductors	LF	700	\$	5.00	\$	3,500.00	
2070 Cont	roller and Cabinet	EA	1	\$1	4,000.00	\$	14,000.00	
Firmware/	Calibration	EA	1	\$	5,300.00	\$	5,300.00	
Cabinet Fo	oundation	EA	1	\$	450.00	\$	450.00	
45' Mast A	Arm Poles and Foundation	EA	0	\$1	5,000.00	\$	-	
Pedestal I	Pole	EA	2	\$	1,000.00	\$	2,000.00	dual pedestals
Three Sec	tion Signal Head	EA	2	\$	1,000.00	\$	2,000.00	
One Secti	on Signal Head	EA	2	\$	500.00	\$	1,000.00	Ramp meter advance signal
Signal Cal	ble	LF	505	\$	2.75	\$	1,388.75	
Subtotal		<u> </u>				\$	59,978.75	
1						<u> </u>	,	J I

Log No.:140Location:I-540 Westbound	Ramp:		Six Forks Road					
Categories Description	Unit	Quantity	U	nit Cost		Total Cost	Assumptions	
Communications		•					•	
CCTV Camera	EA	1	\$	4,000.00	\$	4,000.00		
CCTV Cabinet	EA	1	\$	5,000.00	\$	5,000.00		
CCTV Pole with riser	EA	1	\$	3,000.00	\$	3,000.00		
1" Riser	EA	0	\$	400.00	\$	-		
Serial Communications	EA	350	\$	2.00	\$	700.00	Link to MVDS	
Splice Enclosure	EA	1	\$	1,000.00	\$	1,000.00	Link to SMFO	
Pullbox (Special Size)	EA	1	\$	1,750.00	\$	1,750.00	For splice enclosure	
Modify splice in City signal cabinet	EA	1	\$	2,200.00	\$	2,200.00	Link to SMFO	
Interconnect Center	EA	2	\$	1,500.00	\$	3,000.00	In cabinet	
Fiber-optic Drop Cable (six strands)	LF	800	\$	2.00			Drop cable to controller cabinet, Same	
							distance to power source plus 300' for	
					\$	1,600.00	proposed CCTV on ramp	
Ethernet Switch	EA	2	\$	2,000.00	\$	4,000.00	CCTV and ramp meter controller	
Subtotal					\$	26,250.00		
Pavement Marking	- 11				T		1	
							40 mph design speed. 110' transitions,	
Pavement Marking Removal	LF	640	\$	0.62	\$	396.80	100' narrowed lane	
Raised Pavement Markers	EA	0	\$	4.50	\$	-	Along skip line only	
White Edge Line		320	\$	0.95	\$	304.00	110' transitions, 100' narrowed lane	
Yellow Edge Line		320	\$	0.95	\$	304.00	110' transitions, 100' narrowed lane	
White Skip Line		0	\$	0.24	\$	-		
24" Stop Bar	LF	12	\$	7.00	ې ۲	84.00		
Subtotal Signing				100.00	\$	1,088.80		
Remove existing single and dual post	EA	0	\$	100.00	\$	-	O'un and a stank.	
W3-8, Ramp Metered When Flashing	EA	2	\$	650.00	\$	1,300.00	Sign and post only	
R10.6 Step Llore on Red	EA	1	¢	050.00	¢	650.00	Sign and post	
R10-6, Stop Here off Red	EA	1	¢	175.00	¢	175.00	Pedestal mounted	
W4 1 Morgo Loft		1	ф Ф	650.00	ф Ф	650.00		
	LA	I	φ	050.00	φ •	050.00		
Subtotal Construction					≯ \$	2,950.00		
Traffic Control				20%	\$	20,866.51		
Contingencies				10%	\$	10,433.26		
Total Construction					\$	135,632.32]	
Design				26%	\$	35,264,40	ו	
Construction Administration				10%	\$	13.563.23	1	
Total Design and Construction					\$	184.459.95	1	
			1		۲	,		

Typical Design and Construction Costs										
Site Assumptions Checklist										
Log No.:142Location:I-540 Westbound	Ramp:	Falls of the Neuse Rd.								
Two Lane Ramp Widening (Y/N): Length of Two Lane Ramp Widening (ft.): Distance from Stopbar to W3-8 sign (ft.):	Y 1180 1075									
Pipe Crossings (Y/N): Retaining Walls (Y/N): Fill (Y/N): Guardrail Other than for Ramp Meter Equipment (Y/N): Install Guardrail (one side or two)	N N N Y									
Nearest Power Source (ft.):	1300]								
Note	es									
Nearest power source is traffic signal. Install pedestal poles on both sides, protect with guardrail left side only of ramp										
Connect to City of Raleigh fiber-optic communciations network. Modify splicing in City signal cabinet. Install new wood pole for CCTV camera.										

Log No.:	142	Ramp: Falls of the Neuse Rd.						
Location:	I-540 Westbound							
Categories	Description	Unit	Quantity	Ur	nit Cost	-	Total Cost	Assumptions
Earthwork an	d Structures		quantity	0.				Assumptions
Retaining \	Wall 5' High	LF	0	\$	250.00	\$	_	
Retaining \	Wall 10' High	LF	0	\$	475.00	\$	_	
Excavation))	CY	0	\$	4.00	\$	_	
Fill	·	CY	2059	\$	5.00	\$	10,296,30	
				Ť	0.00	Ŧ	.0,200.00	Seeding along pavement widening and
								around trench, conduit, pull box, and
Seeding		SY	1826	\$	2.50	\$	4,565.00	foundation areas
Subtotal						\$	14.861.30	
		1 1			l	·	,	<u>_</u>
Guardrail								
Relocate (Juardrail Rail	IF	985	\$	15.00	\$	14 775 00	
Treatment		FA	1	\$	1 500 00	\$	1 500 00	
Subtetel		_, ·	•	Ψ	1,000.00	¢	16 275 00	
Subiolai						φ	10,275.00	J
Devine								
Paving Dome Wid	anina	OV I	267	¢	22.00	¢	44 754 44	1
Ramp wid	Poourfooing	ST	307	¢	32.00	ф Ф	11,751.11	
Pavement	Resultacing	51	3700	φ	12.00	ф Ф	44,400.00	
Subtotal						\$	56,151.11	4
<u>Drainage</u>						-		
Pipe		LF	0	\$	44.00	\$	-	
Subtotal						\$	-	
Signalization								
								One queue, three passage and one
6'x6' loops	i	EA	10	\$	394.50	\$	3,945.00	clearance
Detector L	ead-in Cable	EA	390	\$	1.50	\$	585.00	Assumed setback distance 350'
MVDS det	ector	EA	1	\$	1,800.00	\$	1,800.00	Mainline detection
Detector p	ole	EA	1	\$	6,000.00	\$	6,000.00	
Pullbox (St	td.)	EA	6	\$	300.00	\$	1,800.00	
Conduit (T	renched)	LF	2685	\$	6.00	\$	16,110.00	All purposes
Conduit (D	irectional Drilled)	LF	50	\$	14.00	\$	700.00	One ramp crossing, mult. conduits
Modify Ele	ctrical Service	EA	1	\$	3,000.00	\$	3,000.00	
Electrical 0	Conductors	LF	1300	\$	5.00	\$	6,500.00	
2070 Cont	roller and Cabinet	EA	1	\$1	4,000.00	\$	14,000.00	
Firmware/	Calibration	EA	1	\$	5,300.00	\$	5,300.00	
Cabinet Fo	oundation	EA	1	\$	450.00	\$	450.00	
45' Mast A	rm Poles and Foundation	EA	0	\$1	5,000.00	\$	-	
Pedestal F	Pole	EA	2	\$	1,000.00	\$	2,000.00	dual pedestals
Three Sec	tion Signal Head	EA	2	\$	1,000.00	\$	2,000.00	
One Section	on Signal Head	EA	2	\$	500.00	\$	1,000.00	Ramp meter advance signal
Signal Cab	ble	LF	505	\$	2.75	\$	1,388.75	
Subtotal						\$	66,578.75	
•								-

Log No.: Location:	142 I-540 Westbound	Ramp: Falls of the N					se Rd.	
Categories	Description	Unit	Quantity	U	nit Cost		Total Cost	Assumptions
Communicati	ons							
CCTV Car	mera	EA	1	\$	4,000.00	\$	4,000.00	
CCTV Cat	pinet	EA	1	\$	5,000.00	\$	5,000.00	
CCTV Pol	e with riser	EA	1	\$	3,000.00	\$	3,000.00	
1" Riser		EA	0	\$	400.00	\$	-	
Serial Con	nmunications	EA	350	\$	2.00	\$	700.00	Link to MVDS
Splice End	losure	EA	1	\$	1,000.00	\$	1,000.00	Link to SMFO
Pullbox (S	pecial Size)	EA	1	\$	1,750.00	\$	1,750.00	For splice enclosure
Modify spl	ice in City signal cabinet	EA	1	\$	2,200.00	\$	2,200.00	
Interconne	ect Center	EA	2	\$	1,500.00	\$	3,000.00	In cabinet
Fiber-optic	c Drop Cable (six strands)	LF	1400	\$	2.00			Drop cable to controller cabinet, Same distance to power source plus 300' for
						\$	2,800.00	proposed CCTV on ramp
Ethernet S	Switch	EA	2	\$	2,000.00	\$	4,000.00	CCTV and ramp meter controller
Subtotal						\$	27,450.00	
Pavement Ma	arking							•
Pavement	Marking Removal	LF	640	\$	0.62			40 mph design speed. 110' transitions,
	0					\$	396.80	100' narrowed lane
Raised Pa	vement Markers	EA	15	\$	4.50	\$	67.50	Along skip line only
White Edg	e Line	LF	320	\$	0.95	\$	304.00	110' transitions, 100' narrowed lane
Yellow Ed	ge Line	LF	320	\$	0.95	\$	304.00	110' transitions, 100' narrowed lane
White Skip	Line	LF	1180	\$	0.24	\$	280.25	
24" Stop E	Bar	LF	12	\$	7.00	\$	84.00	
Subtotal Signing						\$	1,436.55	
Remove e	xisting single and dual post	EA	4	\$	100.00	\$	400.00	
W3-8, Rar	mp Metered When Flashing	EA	2	\$	650.00	\$	1,300.00	Sign and post only
W3-4, Be	Prepared to Stop	EA	1	\$	650.00	\$	650.00	Sign and post
R10-6, Sto	op Here on Red	EA	1	\$	175.00	\$	175.00	Pedestal mounted
R10-28, X	X Vehicles Per Green	EA	1	\$	175.00	\$	175.00	Pedestal mounted
W4-1L, M	erge Left	EA	1	\$	650.00	\$	650.00	
Subtotal						\$	3,350.00	
Subtotal Cor	nstruction					\$	186,102.71	
Traffic Co	ntrol				20%	\$	37,220.54	
Contingen	cies				10%	\$	18,610.27	
Total Const	ruction					\$	241,933.52	
Design					26%	\$	62,902.72	
Construction	Administration				10%	\$	24,193.35	
Total Design	and Construction					\$	329,029.59	

Alf Badgett, PE Atkins 5200 Seventy-Seven Center Drive Suite 500 Charlotte NC 28217

alf.badgett@atkinsglobal.com 704-665-4403

© Atkins Ltd except where stated otherwise.

The Atkins logo, 'Carbon Critical Design' and the strapline 'Plan Design Enable' are trademarks of Atkins Ltd.