Pavement Marking Life Cycle Cost Analysis

Chris Howard, Matt Springer, Yusuf Sharif

04/02/15
Overview

• NC pavement markings include paint, thermoplastic, cold applied plastic and polyurea.

• This research was coordinated by the NCDOT Signing & Delineation Unit.

• Based on cost-benefit ratio, these results can be used to assist in the selection of pavement marking materials for roadways based on ADT and needed service life.

• The basis for this pavement marking life cycle research is the retroreflectivity of the material which is measured in mcd/lux/m².
History

• Started taking mobile readings around 2000 until the markings were replaced.
• Over 9700 line miles were read.
What do we do with the data?
Parameters & Equations

• Equations
 • Extruded Thermoplastic
 • The Extruded Thermoplastic models used are shown below:

Yellow: \(R_L = 190 + (0.39*R_{L\text{ Initial}}) - (2.09*\text{Time}) - (0.0011*\text{AADT}) - 39.7 \)

White: \(R_L = 190 + (0.39*R_{L\text{ Initial}}) - (2.09*\text{Time}) - (0.0011*\text{AADT}) + 39.7 \)
Parameters & Equations

• **Paint**
 • The model for paint is as shown:

 \[R_L = 55.2 + (0.77 \times R_{L_{\text{Initial}}}) - (4.17 \times \text{Time}) \]

 • Equations came from NCSU report “Pavement Marking Performance Analysis” by Dr. Joseph Hummer, et. al.
 • In this study data collected from NC roads was used to create degradation models for extruded thermoplastic and paint.
• Notes for Equations

• R_L – Final Retroreflectivity in mcd/lux/m²
• $R_{L \text{ Initial}}$ - Initial Retroreflectivity in mcd/lux/m²
• Time - Time since installation in Months
• AADT - Annual Average Daily Traffic in Vehicles Per Day
• Data used to develop the paint model has an average AADT of 1300
Parameters & Equations

• Initial Retroreflectivity Values
 • The initial retroreflectivity values are based on the minimum standards for each material from the NCDOT 2012 Standard Specifications for Roads and Structures.
 • Higher initial retroreflectivity values increase life to a certain point

• Values Used in Research Study
 • Paint: 200 mcd/lux/m²(Yellow) and 225 mcd/lux/m²(White).
 • Extruded Thermoplastic with Standard Beads: 250 mcd/lux/m²(Yellow) and 375 mcd/lux/m²(White).
 • Polyurea with Highly Reflective Elements: 500 mcd/lux/m² (Yellow), 800 mcd/lux/m² (White)
Material Cost

- Extruded Thermoplastic
 - 4” X 90 Mil (Edge) - $0.45 (Std), $0.62 (HRE) installed
 - 4” X 120 Mil (Middle) - $0.55 (Std), $0.72 (HRE) installed

- Paint
 - All - $0.12 installed per coat
 - Permanent paint markings require 2 coats ($0.24)

- Polyurea
 - All - $0.65 installed (HRE)
Assumptions for Cost Analysis

• The following analysis is based on these criteria:

 • The final retroreflectivity (R_L) value used was 100 mcd/lux/m².

 • Final Retroreflectivity value based on information from AASHTO, MUTCD subcommittee, and Paul Carlson (TTI) study.

 • Paint pavement markings will have a life of approximately 1 year when placed in moderate to heavily snowplowed areas.

 • Yellow center lines wear quickest due to color and location in roadway.
Chart Explanation

• Charts 1 – 4 show cost per mile on a 2 lane road for four different materials at four different AADTs based on time.
• Charts 5 – 8 show cost per mile on a 2 lane road with moderate to heavy snowplowing for two different materials at four different AADTs based on time.

• Materials shown:
 • Paint with Standard Beads
 • Thermoplastic with Standard Beads
 • Thermoplastic with Highly Reflective Elements
 • Polyurea with Highly Reflective Elements
Notes:
- All bike lane markings should be heated-in-place thermoplastic
Results

1. Savings at 12 years: $16,264 per mile ($1,355 /yr/mile)
Results

2. Savings at 12 years: $21,333 per mile ($1,777 /yr/mile)
Results

3.

Cost per Mile vs. Time
ADT: 5000 ADT Range: 3001-5000
Min. Retro.: 100

Savings at 12 years: $26,402 per mile ($2,200 /yr/mile)
Results

4. Savings at 12 years:
 $46,678 per mile
 ($3,890/yr/mile)
Results

5.

Savings at 12 years: $33,372 per mile ($2,781/yr/mile)
6. Savings at 12 years: $33,372 per mile ($2,781/yr/mile)

Cost per Mile vs. Time
ADT: 3000 ADT Range: 1301-3000
Min. Retro.: 100 Snowplowed
Results

7.

Savings at 12 years: $33,372 per mile ($2,781/yr/mile)

Cost per Mile vs. Time
ADT: 5000 ADT Range: 3001-5000
Min. Retro.: 100 Snowplowed
Results

8.

Savings at 12 years:
$33,372 per mile
($2,781/yr/mile)
Summary of Analysis

Cost per mile at 12 Years

<table>
<thead>
<tr>
<th>AADT</th>
<th>Paint</th>
<th>Thermo (Std)</th>
<th>Thermo (HRE)</th>
<th>Poly (HRE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1300</td>
<td>$30,414</td>
<td>$31,680</td>
<td>$14,150</td>
<td>$27,456</td>
</tr>
<tr>
<td>3000</td>
<td>$35,483</td>
<td>$31,680</td>
<td>$14,150</td>
<td>$27,456</td>
</tr>
<tr>
<td>5000</td>
<td>$40,552</td>
<td>$31,680</td>
<td>$14,150</td>
<td>$27,456</td>
</tr>
<tr>
<td>10000</td>
<td>$60,828</td>
<td>$31,680</td>
<td>$14,150</td>
<td>$27,456</td>
</tr>
</tbody>
</table>

Cost per mile at 12 Years - Snowplowed

<table>
<thead>
<tr>
<th>AADT</th>
<th>Paint</th>
<th>Poly (HRE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1300</td>
<td>$60,828</td>
<td>$27,456</td>
</tr>
<tr>
<td>3000</td>
<td>$60,828</td>
<td>$27,456</td>
</tr>
<tr>
<td>5000</td>
<td>$60,828</td>
<td>$27,456</td>
</tr>
<tr>
<td>10000</td>
<td>$60,828</td>
<td>$27,456</td>
</tr>
</tbody>
</table>

Most Cost Effective
Summary of Analysis

Savings per Year Using Long-Life Markings

<table>
<thead>
<tr>
<th>Division</th>
<th>0-1300</th>
<th>1301-3000</th>
<th>3001-5000</th>
<th>5001-10000</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Division 1</td>
<td>$476,000</td>
<td>$176,000</td>
<td>$139,000</td>
<td>$183,000</td>
<td>$974,000</td>
</tr>
<tr>
<td>Division 2</td>
<td>$122,000</td>
<td>$50,000</td>
<td>$42,000</td>
<td>$78,000</td>
<td>$292,000</td>
</tr>
<tr>
<td>Division 3</td>
<td>$508,000</td>
<td>$243,000</td>
<td>$174,000</td>
<td>$331,000</td>
<td>$1,256,000</td>
</tr>
<tr>
<td>Division 4</td>
<td>$89,000</td>
<td>$44,000</td>
<td>$31,000</td>
<td>$43,000</td>
<td>$207,000</td>
</tr>
<tr>
<td>Division 5</td>
<td>$256,000</td>
<td>$140,000</td>
<td>$123,000</td>
<td>$276,000</td>
<td>$795,000</td>
</tr>
<tr>
<td>Division 6</td>
<td>$474,000</td>
<td>$233,000</td>
<td>$174,000</td>
<td>$292,000</td>
<td>$1,173,000</td>
</tr>
<tr>
<td>Division 7</td>
<td>$423,000</td>
<td>$309,000</td>
<td>$251,000</td>
<td>$486,000</td>
<td>$1,469,000</td>
</tr>
<tr>
<td>Division 8</td>
<td>$778,000</td>
<td>$313,000</td>
<td>$196,000</td>
<td>$408,000</td>
<td>$1,695,000</td>
</tr>
<tr>
<td>Division 9</td>
<td>$65,000</td>
<td>$44,000</td>
<td>$35,000</td>
<td>$70,000</td>
<td>$214,000</td>
</tr>
<tr>
<td>Division 10</td>
<td>$211,000</td>
<td>$87,000</td>
<td>$64,000</td>
<td>$202,000</td>
<td>$564,000</td>
</tr>
<tr>
<td>Division 11</td>
<td>$1,071,000</td>
<td>$467,000</td>
<td>$259,000</td>
<td>$295,000</td>
<td>$2,092,000</td>
</tr>
<tr>
<td>Division 12</td>
<td>$684,000</td>
<td>$339,000</td>
<td>$253,000</td>
<td>$303,000</td>
<td>$1,579,000</td>
</tr>
<tr>
<td>Division 13</td>
<td>$1,021,000</td>
<td>$417,000</td>
<td>$192,000</td>
<td>$261,000</td>
<td>$1,891,000</td>
</tr>
<tr>
<td>Division 14</td>
<td>$954,000</td>
<td>$264,000</td>
<td>$189,000</td>
<td>$222,000</td>
<td>$1,629,000</td>
</tr>
<tr>
<td>Total</td>
<td>$7,132,000</td>
<td>$3,126,000</td>
<td>$2,122,000</td>
<td>$3,450,000</td>
<td>$15,830,000</td>
</tr>
</tbody>
</table>

Notes:
- Total mileage marked from statewide 2014 data.
- Estimated mileage marked in each Division is based on average percent of 4” paint marking from the past 5 years.
- Estimated mileage marked in each ADT range is a weighted percentage of each Division’s total mileage in that range.
- Division 11 – 14 have moderate to heavy snowplowing
Requirements & Options

- Anticipated Federal Requirements
 - The next version of the MUTCD will likely have minimum retroreflectivity values for pavement markings.
 - Our current practices will not meet these requirements as a whole on our roadway system.

- Options
 - Spend more money marking roadways or,
 - Become more efficient with the money we have by using long-life pavement markings.
Recommendations

• The second option proves to be the most cost effective.

• Immediate Actions

 • Use long-life final markings on all TIP and Resurfacing projects, and in all cases where it is cost effective.

• Future Solutions

 • Use long-life markings on all final applications.
 • This would also lessen worker exposure.
Conclusions

- **Expected Results**
 - Systematically meet minimum retroreflectivity requirements.
 - Save an estimated $15,800,000 a year statewide.
 - A majority of these savings will be from the Highway Fund – General Maintenance.

- **State Forces**
 - Eventually minimize or phase out utilization of state forces for pavement marking operations.
Questions / Comments